Lei Wu
2025
Stimulate the Critical Thinking of LLMs via Debiasing Discussion
Ruiyu Xiao
|
Lei Wu
|
Yuanxing Liu
|
Weinan Zhang
|
Ting Liu
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Large language models (LLMs) often succumb to users’ viewpoints when faced with conflicting perspectives. We identify two key biases underlying this issue : stance homogeneity bias and human preference bias. To address these biases, we propose a novel two-stage training framework: Multi-stance Discussion Sampling and Truth Alignment Training (MDTA). First, we introduce an equal multi-stance discussion framework to automatically generate multi-model discussion datasets. Based on this framework, we construct the first and largest multi-model fair discussion dataset named Eq-Discussion for supervised fine-tuning, reducing stance homogeneity bias. Second, we optimize Reinforcement Learning from Human Feedback (RLHF) to align with discussion correctness, mitigating human preference bias. Extensive experimental results demonstrate that MDTA effectively reduces both biases and significantly enhances the performance of LLMs across a variety of downstream tasks, including reading comprehension, logical reasoning, and social question answering. Furthermore, we observe that MDTA improves the generalization capabilities of LLMs, leading to substantial performance improvements in non-discussion scenarios and on out-of-domain datasets.
2024
Prove Your Point!: Bringing Proof-Enhancement Principles to Argumentative Essay Generation
Ruiyu Xiao
|
Lei Wu
|
Yuhang Gou
|
Weinan Zhang
|
Ting Liu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Argumentative essay generation (AEG) aims to generate complete texts on specific controversial topics or debates. Although current AEG methods can generate individual opinions, they often overlook the high-level connections between these opinions. This often leads to the generated results being mired in logical confusion, unable to proof their own arguments effectively. The generated essay may present evidence that contradicts the claims or they may fail to assemble the claims into logical flow. In this paper, we present a unified two-stage framework: Proof-Enhancement and Self-Annotation (PESA) for AEG with a focus on logical enhancement. Specifically, we first construct pseudo-labels for logical information,claims and grounds, using a large language model. We then propose a tree planning approach that introduces proof principles and ensures logical consistency. Extensive experimental results show that, benefiting from proof principle guidance, PESA generates argumentative essays with better logical validity and persuasiveness than strong baseline models.