Social reasoning abilities are crucial for AI systems to effectively interpret and respond to multimodal human communication and interaction within social contexts. We introduce Social Genome, the first benchmark for fine-grained, grounded social reasoning abilities of multimodal models. Social Genome contains 272 videos of interactions and 1,486 human-annotated reasoning traces related to inferences about these interactions. These traces contain 5,777 reasoning steps that reference evidence from visual cues, verbal cues, vocal cues, and external knowledge (contextual knowledge external to videos). Social Genome is also the first modeling challenge to study external knowledge in social reasoning. Social Genome computes metrics to holistically evaluate semantic and structural qualities of model-generated social reasoning traces. We demonstrate the utility of Social Genome through experiments with state-of-the-art models, identifying performance gaps and opportunities for future research to improve the grounded social reasoning abilities of multimodal models.
Building socially-intelligent AI agents (Social-AI) is a multidisciplinary, multimodal research goal that involves creating agents that can sense, perceive, reason about, learn from, and respond to affect, behavior, and cognition of other agents (human or artificial). Progress towards Social-AI has accelerated in the past decade across several computing communities, including natural language processing, machine learning, robotics, human-machine interaction, computer vision, and speech. Natural language processing, in particular, has been prominent in Social-AI research, as language plays a key role in constructing the social world. In this position paper, we identify a set of underlying technical challenges and open questions for researchers across computing communities to advance Social-AI. We anchor our discussion in the context of social intelligence concepts and prior progress in Social-AI research.
The self-supervised objective of masked prediction has led to promising performance gains on a variety of downstream tasks. However, while most approaches randomly mask tokens, there is strong intuition that deciding what to mask can substantially improve learning outcomes. We investigate this in continued pretraining setting in which pretrained models continue to pretrain on domain-specific data before performing some downstream task. We introduce Difference-Masking, a masking strategy that automatically chooses what to mask during continued pretraining by considering what makes a task domain different from the pretraining domain. Empirically, we find that Difference-Masking outperforms baselines on continued pretraining settings across four diverse language-only and multimodal video tasks.