Lea Hirlimann


2025

pdf bib
On Relation-Specific Neurons in Large Language Models
Yihong Liu | Runsheng Chen | Lea Hirlimann | Ahmad Dawar Hakimi | Mingyang Wang | Amir Hossein Kargaran | Sascha Rothe | François Yvon | Hinrich Schuetze
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

In large language models (LLMs), certain neurons can store distinct pieces of knowledge learned during pretraining. While factual knowledge typically appears as a combination of relations and entities, it remains unclear whether some neurons focus on a relation itself – independent of any entity. We hypothesize such neurons detect a relation in the input text and guide generation involving such a relation. To investigate this, we study the LLama-2 family on a chosen set of relations, with a statistics-based method. Our experiments demonstrate the existence of relation-specific neurons. We measure the effect of selectively deactivating candidate neurons specific to relation r on the LLM’s ability to handle (1) facts involving relation r and (2) facts involving a different relation r' ≠ r. With respect to their capacity for encoding relation information, we give evidence for the following three properties of relation-specific neurons. (i) Neuron cumulativity. Multiple neurons jointly contribute to processing facts involving relation r, with no single neuron fully encoding a fact in r on its own. (ii) Neuron versatility. Neurons can be shared across multiple closely related as well as less related relations. In addition, some relation neurons transfer across languages. (iii) Neuron interference. Deactivating neurons specific to one relation can improve LLMs’ factual recall performance for facts of other relations. We make our code and data publicly available at https://github.com/cisnlp/relation-specific-neurons.