Recently, directly using large language models (LLMs) has been shown to be the most reliable method to evaluate QA models. However, it suffers from limited interpretability, high cost, and environmental harm. To address these, we propose to use soft exact match (EM) with entity-driven answer set expansion. Our approach expands the gold answer set to include diverse surface forms, based on the observation that the surface forms often follow particular patterns depending on the entity type. The experimental results show that our method outperforms traditional evaluation methods by a large margin. Moreover, the reliability of our evaluation method is comparable to that of LLM-based ones, while offering the benefits of high interpretability and reduced environmental harm.
Recently, large vision–language models (LVLMs) have emerged as the preferred tools for judging text–image alignment, yet their robustness along the visual modality remains underexplored. This work is the first study to address a key research question: Can adversarial visual manipulations systematically fool LVLM judges into assigning unfairly inflated scores? We define potential image-induced biases within the context of T2I evaluation and examine how these biases affect the evaluations of LVLM judges. Moreover, we introduce a novel, fine-grained, multi-domain meta-evaluation benchmark named FRAME, which is deliberately constructed to exhibit diverse score distributions. By introducing the defined biases into the benchmark, we reveal that all tested LVLM judges exhibit vulnerability across all domains, consistently inflating scores for manipulated images. Further analysis reveals that combining multiple biases amplifies their effects, and pairwise evaluations are similarly susceptible. Moreover, we observe that visual biases persist despite prompt-based mitigation strategies, highlighting the vulnerability of current LVLM evaluation systems and underscoring the urgent need for more robust LVLM judges.
Large Vision-Language Models (LVLMs) demonstrate impressive capabilities in generating detailed and coherent responses from visual inputs.However, they are prone to generate hallucinations due to an over-reliance on language priors. To address this issue, we investigate the language priors in LVLMs and make two key observations: (1) Even when predicting the tokens associated with image-related part-of-speech (POS), models increasingly rely on linguistic priors as the token sequences grow, thereby amplifying hallucinations. (2) Methods that directly calibrate LVLM’s output distribution to mitigate language priors can lead to a degradation in text quality or even exacerbate hallucinations.Based on these findings, we propose a novel method, Summary-Guided Decoding (SumGD). This method naturally encourages the model to focus more on image information by reducing the text context through summaries, while controlling only the image-related POS tokens to maintain text quality.Through experiments, we demonstrate that SumGD achieves state-of-the-art performance on object hallucination benchmarks. Furthermore, in terms of the trade-off between precision and recall, SumGD achieves Pareto optimality among the existing methods.Lastly, we observe that although existing methods struggle to balance the reduction of object hallucinations with maintaining text quality, SumGD demonstrates robustness in handling this challenge.
The goal of DSTC11 track 5 is to build task-oriented dialogue systems that can effectively utilize external knowledge sources such as FAQs and reviews. This year’s challenge differs from previous ones as it includes subjective knowledge snippets and requires multiple snippets for a single turn. We propose a pipeline system for the challenge focusing on entity tracking, knowledge selection and response generation. Specifically, we devise a novel heuristic to ensemble the outputs from the rule-based method and neural model for entity tracking and knowledge selection. We also leverage metadata information in the knowledge source to handle fine-grained user queries. Our approach achieved the first place in objective evaluation and the third place in human evaluation of DSTC11 track 5.