2025
pdf
bib
abs
Benchmarking Open-ended Audio Dialogue Understanding for Large Audio-Language Models
Kuofeng Gao
|
Shu-Tao Xia
|
Ke Xu
|
Philip Torr
|
Jindong Gu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Large Audio-Language Models (LALMs), such as GPT-4o, have recently unlocked audio dialogue capabilities, enabling direct spoken exchanges with humans. The potential of LALMs broadens their applicability across a wide range of practical scenarios supported by audio dialogues. However, given these advancements, a comprehensive benchmark to evaluate the performance of LALMs in the open-ended audio dialogue understanding remains absent currently. To address this gap, we propose an **A**udio **D**ialogue **U**nderstanding **Bench**mark **(ADU-Bench),** which consists of 4 benchmark datasets. They assess the open-ended audio dialogue ability for LALMs in 3 general scenarios, 12 skills, 9 multilingual languages, and 4 categories of ambiguity handling. Notably, *we firstly propose the evaluation of ambiguity handling* in audio dialogues that expresses different intentions beyond the same literal meaning of sentences, *e.g.,* ‘“Really!?”‘ with different intonations. In summary, ADU-Bench includes over 20,000 open-ended audio dialogues for the assessment of LALMs. Through extensive experiments conducted on 16 LALMs, our analysis reveals that existing LALMs struggle with mathematical symbols and formulas, understanding human behavior such as roleplay, comprehending multiple languages, and handling audio dialogue ambiguities from different phonetic elements, such as intonations, pause positions, and homophones. The benchmark is available at https://adu-bench.github.io/.
pdf
bib
abs
VLMInferSlow: Evaluating the Efficiency Robustness of Large Vision-Language Models as a Service
Xiasi Wang
|
Tianliang Yao
|
Simin Chen
|
Runqi Wang
|
Lei Ye
|
Kuofeng Gao
|
Yi Huang
|
Yuan Yao
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Vision-Language Models (VLMs) have demonstrated great potential in real-world applications. While existing research primarily focuses on improving their accuracy, the efficiency remains underexplored. Given the real-time demands of many applications and the high inference overhead of VLMs, efficiency robustness is a critical issue. However, previous studies evaluate efficiency robustness under unrealistic assumptions, requiring access to the model architecture and parameters—an impractical scenario in ML-as-a-service settings, where VLMs are deployed via inference APIs. To address this gap, we propose VLMInferSlow, a novel approach for evaluating VLM efficiency robustness in a realistic black-box setting. VLMInferSlow incorporates fine-grained efficiency modeling tailored to VLM inference and leverages zero-order optimization to search for adversarial examples. Experimental results show that VLMInferSlow generates adversarial images with imperceptible perturbations, increasing the computational cost by up to 128.47%. We hope this research raises the community’s awareness about the efficiency robustness of VLMs.
pdf
bib
abs
Your Language Model Can Secretly Write Like Humans: Contrastive Paraphrase Attacks on LLM-Generated Text Detectors
Hao Fang
|
Jiawei Kong
|
Tianqu Zhuang
|
Yixiang Qiu
|
Kuofeng Gao
|
Bin Chen
|
Shu-Tao Xia
|
Yaowei Wang
|
Min Zhang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
The misuse of large language models (LLMs), such as academic plagiarism, has driven the development of detectors to identify LLM-generated texts. To bypass these detectors, paraphrase attacks have emerged to purposely rewrite these texts to evade detection. Despite the success, existing methods require substantial data and computational budgets to train a specialized paraphraser, and their attack efficacy greatly reduces when faced with advanced detection algorithms. To address this, we propose Contrastive Paraphrase Attack (CoPA), a training-free method that effectively deceives text detectors using off-the-shelf LLMs. The first step is to carefully craft instructions that encourage LLMs to produce more human-like texts. Nonetheless, we observe that the inherent statistical biases of LLMs can still result in some generated texts carrying certain machine-like attributes that can be captured by detectors. To overcome this, CoPA constructs an auxiliary machine-like word distribution as a contrast to the human-like distribution generated by the LLM. By subtracting the machine-like patterns from the human-like distribution during the decoding process, CoPA is able to produce sentences that are less discernible by text detectors. Our theoretical analysis suggests the superiority of the proposed attack. Extensive experiments validate the effectiveness of CoPA in fooling text detectors across various scenarios.
pdf
bib
abs
Pre-training CLIP against Data Poisoning with Optimal Transport-based Matching and Alignment
Tong Zhang
|
Kuofeng Gao
|
Jiawang Bai
|
Leo Yu Zhang
|
Xin Yin
|
Zonghui Wang
|
Shouling Ji
|
Wenzhi Chen
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Recent studies have shown that Contrastive Language-Image Pre-training (CLIP) models are threatened by targeted data poisoning and backdoor attacks due to massive training image-caption pairs crawled from the Internet. Previous defense methods correct poisoned image-caption pairs by matching a new caption for each image. However, the matching process solely relies on the global representations of images and captions, overlooking fine-grained features of visual and textual features. It may introduce incorrect image-caption pairs and detriment the CLIP pre-training. To address their limitations, we propose an Optimal Transport-based framework to reconstruct the image-caption pairs, named OTCCLIP. We involve a new optimal transport-based distance measure between fine-grained visual and textual feature sets and re-assign new captions based on the proposed optimal transport distance. Additionally, to further reduce the negative impact of mismatched pairs, we encourage the inter- and intra-modality fine-grained alignment by employing optimal transport-based objective functions. Our experiments demonstrate that OTCCLIP can successfully decrease the attack success rates of poisoning attacks to 0% in most cases. Also, compared to previous methods, OTCCLIPsignificantly improves CLIP’s zero-shot and linear probing performance trained on poisoned datasets.
pdf
bib
abs
QueryAttack: Jailbreaking Aligned Large Language Models Using Structured Non-natural Query Language
Qingsong Zou
|
Jingyu Xiao
|
Qing Li
|
Zhi Yan
|
Yuhang Wang
|
Li Xu
|
Wenxuan Wang
|
Kuofeng Gao
|
Ruoyu Li
|
Yong Jiang
Findings of the Association for Computational Linguistics: ACL 2025
Recent advances in large language models (LLMs) have demonstrated remarkable potential in the field of natural language processing. Unfortunately, LLMs face significant security and ethical risks. Although techniques such as safety alignment are developed for defense, prior researches reveal the possibility of bypassing such defenses through well-designed jailbreak attacks. In this paper, we propose QueryAttack, a novel framework to examine the generalizability of safety alignment. By treating LLMs as knowledge databases, we translate malicious queries in natural language into structured non-natural query language to bypass the safety alignment mechanisms of LLMs. We conduct extensive experiments on mainstream LLMs, and the results show that QueryAttack not only can achieve high attack success rates (ASRs), but also can jailbreak various defense methods. Furthermore, we tailor a defense method against QueryAttack, which can reduce ASR by up to 64% on GPT-4-1106. Our code is available at https://anonymous.4open.science/r/QueryAttack-334B.