Kuntae Kim

Also published as: KunTae Kim


2025

pdf bib
Arena-lite: Efficient and Reliable Large Language Model Evaluation via Tournament-Based Direct Comparisons
Seonil Son | Ju-Min Oh | Heegon Jin | Cheolhun Jang | Jeongbeom Jeong | KunTae Kim
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

As Large Language Models (LLMs) expand across domains, LLM judges have become essential for systems evaluation. Current benchmarks typically compare system outputs against baselines.This baseline-mediated approach, though convenient, yields lower reliability than direct comparison between systems.We propose Arena-Lite which integrates tournament structure on top of head-to-head comparison.The application of a tournament structure and direct comparison eliminates the need for baseline outputs, reduces the number of required comparisons, and allows higher reliability in system rankings.We conducted two experiments: (1) controlled stochastic modeling and (2) empirical validation with a real LLM judge. Those experiments collectively demonstrate that Arena-Lite consistently achieves higher reliability with fewer comparisons, even with smaller datasets or weaker judges.We release an easy-to-use web demonstration and code to foster adoption of Arena-Lite, streamlining model selection across research and industry communities. Arena-Lite demo and code are available on https://huggingface.co/spaces/NCSOFT/ArenaLite

2020

pdf bib
Effective Crowdsourcing of Multiple Tasks for Comprehensive Knowledge Extraction
Sangha Nam | Minho Lee | Donghwan Kim | Kijong Han | Kuntae Kim | Sooji Yoon | Eun-kyung Kim | Key-Sun Choi
Proceedings of the Twelfth Language Resources and Evaluation Conference

Information extraction from unstructured texts plays a vital role in the field of natural language processing. Although there has been extensive research into each information extraction task (i.e., entity linking, coreference resolution, and relation extraction), data are not available for a continuous and coherent evaluation of all information extraction tasks in a comprehensive framework. Given that each task is performed and evaluated with a different dataset, analyzing the effect of the previous task on the next task with a single dataset throughout the information extraction process is impossible. This paper aims to propose a Korean information extraction initiative point and promote research in this field by presenting crowdsourcing data collected for four information extraction tasks from the same corpus and the training and evaluation results for each task of a state-of-the-art model. These machine learning data for Korean information extraction are the first of their kind, and there are plans to continuously increase the data volume. The test results will serve as an initiative result for each Korean information extraction task and are expected to serve as a comparison target for various studies on Korean information extraction using the data collected in this study.

pdf bib
Enhancing Quality of Corpus Annotation: Construction of the Multi-Layer Corpus Annotation and Simplified Validation of the Corpus Annotation
Youngbin Noh | Kuntae Kim | Minho Lee | Cheolhun Heo | Yongbin Jeong | Yoosung Jeong | Younggyun Hahm | Taehwan Oh | Hyonsu Choe | Seokwon Park | Jin-Dong Kim | Key-Sun Choi
Proceedings of the 34th Pacific Asia Conference on Language, Information and Computation