Kezhong Lu

Also published as: KeZhong Lu


2025

pdf bib
R-CHAR: A Metacognition-Driven Framework for Role-Playing in Large Language Models
Haiming Qin | Jiwei Zhang | Wei Zhang | KeZhong Lu | Mingyang Zhou | Hao Liao | Rui Mao
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Role-playing capabilities in large language models (LLMs) often lack cognitive consistency in complex scenarios that require deep understanding and coherent reasoning. While recent reasoning models excel in math and coding tasks, they show limited effectiveness in open-ended role-playing scenarios. We introduce R-CHAR (Role-Consistent Hierarchical Adaptive Reasoning), a metacognition-driven framework that enhances role-playing performance through guided thinking trajectories synthesis and adaptive evaluation. Our approach demonstrates that concise thinking processes can achieve superior performance efficiently compared to elaborate reasoning chains in role-playing social intelligence tasks, outperforming existing specialized models. Experimental results on the SocialBench benchmark show significant and stable performance improvements across varying scenario complexities, showing particular strength in long-context comprehension (from 34.64% to 68.59%) and group-level social interactions. Our work advances the development of cognitively consistent role-playing systems, bridging the gap between surface-level mimicry and authentic character simulation.

2023

pdf bib
Explainable Recommendation with Personalized Review Retrieval and Aspect Learning
Hao Cheng | Shuo Wang | Wensheng Lu | Wei Zhang | Mingyang Zhou | Kezhong Lu | Hao Liao
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Explainable recommendation is a technique that combines prediction and generation tasks to produce more persuasive results. Among these tasks, textual generation demands large amounts of data to achieve satisfactory accuracy. However, historical user reviews of items are often insufficient, making it challenging to ensure the precision of generated explanation text. To address this issue, we propose a novel model, ERRA (Explainable Recommendation by personalized Review retrieval and Aspect learning). With retrieval enhancement, ERRA can obtain additional information from the training sets. With this additional information, we can generate more accurate and informative explanations. Furthermore, to better capture users’ preferences, we incorporate an aspect enhancement component into our model. By selecting the top-n aspects that users are most concerned about for different items, we can model user representation with more relevant details, making the explanation more persuasive. To verify the effectiveness of our model, extensive experiments on three datasets show that our model outperforms state-of-the-art baselines (for example, 3.4% improvement in prediction and 15.8% improvement in explanation for TripAdvisor).