While large language models have demonstrated impressive reasoning abilities, their extension to the audio modality, particularly within large audio-language models (LALMs), remains underexplored. Addressing this gap requires a systematic approach that involves a capable base model, high-quality reasoning-oriented audio data, and effective training algorithms. In this work, we present a comprehensive solution for audio logical reasoning (ALR) tasks: we introduce SoundMind, a dataset of 6,446 audio–text annotated samples specifically curated to support complex reasoning. Building on this resource, we propose SoundMind-RL, a rule-based reinforcement learning (RL) algorithm designed to equip audio-language models with robust audio–text reasoning capabilities. By fine-tuning Qwen2.5-Omni-7B on the proposed SoundMind dataset using SoundMind-RL, we achieve strong and consistent improvements over state-of-the-art baselines on the SoundMind benchmark. This work highlights the benefit of combining high-quality, reasoning-focused datasets with specialized RL techniques, and contributes to advancing auditory intelligence in language models. The code and dataset are publicly available at https://github.com/xid32/SoundMind.
Visual Question Answering (VQA) is increasingly used in diverse applications ranging from general visual reasoning to safety-critical domains such as medical imaging and autonomous systems, where models must provide not only accurate answers but also explanations that humans can easily understand and verify. Prototype-based modeling has shown promise for interpretability by grounding predictions in semantically meaningful regions for purely visual reasoning tasks, yet remains underexplored in the context of VQA. We present ProtoVQA, a unified prototypical framework that (i) learns question-aware prototypes that serve as reasoning anchors, connecting answers to discriminative image regions, (ii) applies spatially constrained matching to ensure that the selected evidence is coherent and semantically relevant, and (iii) supports both answering and grounding tasks through a shared prototype backbone. To assess explanation quality, we propose the Visual–Linguistic Alignment Score (VLAS), which measures how well the model’s attended regions align with ground-truth evidence. Experiments on Visual7W show that ProtoVQA yields faithful, fine-grained explanations while maintaining competitive accuracy, advancing the development of transparent and trustworthy VQA systems.
Legal judgment assistants are developing fast due to impressive progress of large language models (LLMs). However, people can hardly trust the results generated by a model without reliable analysis of legal judgement. For legal practitioners, it is common practice to utilize syllogistic reasoning to select and evaluate the arguments of the parties as part of the legal decision-making process. But the development of syllogistic reasoning for legal judgment analysis is hindered by the lack of resources: (1) there is no large-scale syllogistic reasoning dataset for legal judgment analysis, and (2) there is no set of established benchmarks for legal judgment analysis. In this paper, we construct and manually correct a syllogistic reasoning dataset for legal judgment analysis. The dataset contains 11,239 criminal cases which cover 4 criminal elements, 80 charges and 124 articles. We also select a set of large language models as benchmarks, and conduct a in-depth analysis of the capacity of their legal judgment analysis.