Ke Lei


2025

pdf bib
T2A-Feedback: Improving Basic Capabilities of Text-to-Audio Generation via Fine-grained AI Feedback
Zehan Wang | Ke Lei | Chen Zhu | Jiawei Huang | Sashuai Zhou | Luping Liu | Xize Cheng | Shengpeng Ji | Zhenhui Ye | Tao Jin | Zhou Zhao
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Text-to-audio (T2A) generation has achieved remarkable progress in generating a variety of audio outputs from language prompts. However, current state-of-the-art T2A models still struggle to satisfy human preferences for prompt-following and acoustic quality when generating complex multi-event audio. To improve the performance of the model in these high-level applications, we propose to enhance the basic capabilities of the model with AI feedback learning. First, we introduce fine-grained AI audio scoring pipelines to: 1) verify whether each event in the text prompt is present in the audio (Event Occurrence Score), 2) detect deviations in event sequences from the language description (Event Sequence Score), and 3) assess the overall acoustic and harmonic quality of the generated audio (Acoustic&Harmonic Quality). We evaluate these three automatic scoring pipelines and find that they correlate significantly better with human preferences than other evaluation metrics. This highlights their value as both feedback signals and evaluation metrics. Utilizing our robust scoring pipelines, we construct a large audio preference dataset, T2A-FeedBack, which contains 41k prompts and 249k audios, each accompanied by detailed scores. Moreover, we introduce T2A-EpicBench, a benchmark that focuses on long captions, multi-events, and story-telling scenarios, aiming to evaluate the advanced capabilities of T2A models. Finally, we demonstrate how T2A-FeedBack can enhance current state-of-the-art audio model. With simple preference tuning, the audio generation model exhibits significant improvements in both simple (AudioCaps test set) and complex (T2A-EpicBench) scenarios.

pdf bib
RecBase: Generative Foundation Model Pretraining for Zero-Shot Recommendation
Sashuai Zhou | Weinan Gan | Qijiong Liu | Ke Lei | Jieming Zhu | Hai Huang | Yan Xia | Ruiming Tang | Zhenhua Dong | Zhou Zhao
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Recent advances in LLM-based recommendation have shown promise, yet their cross-domain generalization is hindered by a fundamental mismatch between language-centric pretraining and the recommendation task. Existing methods, relying on language-level knowledge, fail to capture dynamic, item-level user interests across domains. To bridge this gap, we propose RecBase, a domain-agnostic foundational model pretrained with a recommendation-oriented objective. RecBase leverages a large-scale, heterogeneous, cross-domain corpus with unified textual representations and feature mappings to enhance cross-domain generalization. To further align item semantics across domains, we introduce a unified item tokenizer that encodes items into hierarchical concept identifiers, enabling structured representation and efficient vocabulary sharing. The model is trained using an autoregressive objective to capture complex item-level sequential patterns. On eight real-world datasets, our 1.5B-parameter model matches or surpasses the performance of LLM baselines up to 7B parameters in zero-shot and cross-domain recommendation tasks.