*The comparison between discriminative and generative classifiers has intrigued researchers since [Efron (1975)’s](https://www.jstor.org/stable/2285453) seminal analysis of logistic regression versus discriminant analysis. While early theoretical work established that generative classifiers exhibit lower sample complexity but higher asymptotic error in simple linear settings, these trade-offs remain unexplored in the transformer era. We present the first comprehensive evaluation of modern generative and discriminative architectures—Auto-regressive, Masked Language Modeling, Discrete Diffusion, and Encoders for text classification. Our study reveals that the classical “two regimes” phenomenon manifests distinctly across different architectures and training paradigms. Beyond accuracy, we analyze sample efficiency, calibration, noise robustness, and ordinality across diverse scenarios. Our findings offer practical guidance for selecting the most suitable modeling approach based on real-world constraints such as latency and data limitations.*
Multimodal Large Language Models (MLLMs), are recent advancement of Vision-Language Models (VLMs) that have driven major advances in video understanding. However, their vulnerability to adversarial tampering and manipulations remains underexplored. To address this gap, we introduce MVTamperBench, a benchmark that systematically evaluates MLLM robustness against five prevalent tampering techniques: rotation, masking, substitution, repetition, and dropping; based on real-world visual tampering scenarios such as surveillance interference, social media content edits, and misinformation injection. MVTamperBench comprises ~3.4K original videos, expanded into over ~17K tampered clips covering 19 distinct video manipulation tasks. This benchmark challenges models to detect manipulations in spatial and temporal coherence. We evaluate 45 recent MLLMs from 15+ model families. We reveal substantial variability in resilience across tampering types and show that larger parameter counts do not necessarily guarantee robustness. MVTamperBench sets a new benchmark for developing tamper-resilient MLLM in safety-critical applications, including detecting clickbait, preventing harmful content distribution, and enforcing policies on media platforms. We release all code, data, and benchmark to foster open research in trustworthy video understanding.
Ordinal Classification (OC) is a widely encountered challenge in Natural Language Processing (NLP), with applications in various domains such as sentiment analysis, rating prediction, and more. Previous approaches to tackle OC have primarily focused on modifying existing or creating novel loss functions that explicitly account for the ordinal nature of labels. However, with the advent of Pre-trained Language Models (PLMs), it became possible to tackle ordinality through the implicit semantics of the labels as well. This paper provides a comprehensive theoretical and empirical examination of both these approaches. Furthermore, we also offer strategic recommendations regarding the most effective approach to adopt based on specific settings.