Junxiao Liu


2025

pdf bib
R-PRM: Reasoning-Driven Process Reward Modeling
Shuaijie She | Junxiao Liu | Yifeng Liu | Jiajun Chen | Xin Huang | Shujian Huang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Process Reward Models (PRMs) have emerged as a promising solution to address the reasoning mistakes of large language models (LLMs). However, existing PRMs typically output evaluation scores directly, limiting both learning efficiency and evaluation accuracy. This limitation is further compounded by the scarcity of annotated data. To address these issues, we propose Reasoning-Driven Process Reward Modeling (R-PRM), which activates inherent reasoning to enhance process-level evaluation. First, we leverage stronger LLMs to generate seed data from limited annotations, effectively activating reasoning capabilities and enabling comprehensive step-by-step evaluation. Second, we explore self-improvement of our PRM through preference optimization, without requiring additional annotated data. Third, we introduce inference time scaling to fully harness our model’s reasoning potential. Extensive experiments demonstrate R-PRM’s effectiveness: on ProcessBench and PRMBench, it surpasses strong baselines by 13.9 and 8.5 F1 scores. When applied to guide mathematical reasoning, R-PRM achieves consistent accuracy improvements of over 8.6 points across six challenging datasets. Further analysis reveals that R-PRM exhibits more comprehensive evaluation and robust generalization, indicating its broader potential.

pdf bib
Process-based Self-Rewarding Language Models
Shimao Zhang | Xiao Liu | Xin Zhang | Junxiao Liu | Zheheng Luo | Shujian Huang | Yeyun Gong
Findings of the Association for Computational Linguistics: ACL 2025

Large Language Models have demonstrated outstanding performance across various downstream tasks and have been widely applied in multiple scenarios. Human-annotated preference data is used for training to further improve LLMs’ performance, which is constrained by the upper limit of human performance. Therefore, Self-Rewarding method has been proposed, where LLMs generate training data by rewarding their own outputs. However, the existing self-rewarding paradigm is not effective in mathematical reasoning scenarios and may even lead to a decline in performance. In this work, we propose the Process-based Self-Rewarding pipeline for language models, which introduces long-thought reasoning, step-wise LLM-as-a-Judge, and step-wise preference optimization within the self-rewarding paradigm. Our new paradigm successfully enhances the performance of LLMs on multiple mathematical reasoning benchmarks through iterative Process-based Self-Rewarding, demonstrating the immense potential of process-based self-rewarding to achieve LLM reasoning that may surpass human capabilities.