Junting Lu


2025

pdf bib
AXIS: Efficient Human-Agent-Computer Interaction with API-First LLM-Based Agents
Junting Lu | Zhiyang Zhang | Fangkai Yang | Jue Zhang | Lu Wang | Chao Du | Qingwei Lin | Saravan Rajmohan | Dongmei Zhang | Qi Zhang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multimodal large language models (MLLMs) have enabled LLM-based agents to directly interact with application user interfaces (UIs), enhancing agents’ performance in complex tasks. However, these agents often suffer from high latency and low reliability due to the extensive sequential UI interactions. To address this issue, we propose AXIS, a novel LLM-based agents framework that prioritize actions through application programming interfaces (APIs) over UI actions. This framework also facilitates the creation and expansion of APIs through automated exploration of applications. Our experiments on Microsoft Word demonstrate that AXIS reduces task completion time by 65%-70% and cognitive workload by 38%-53%, while maintaining accuracy of 97%-98% compared to humans. Our work contributes to a new human-agent-computer interaction (HACI) framework and explores a fresh UI design principle for application providers to turn applications into agents in the era of LLMs, paving the way towards an agent-centric operating system (Agent OS). The code and dataset will be available at https://aka.ms/haci_axis.

pdf bib
Thread: A Logic-Based Data Organization Paradigm for How-To Question Answering with Retrieval Augmented Generation
Kaikai An | Fangkai Yang | Liqun Li | Junting Lu | Sitao Cheng | Shuzheng Si | Lu Wang | Pu Zhao | Lele Cao | Qingwei Lin | Saravan Rajmohan | Dongmei Zhang | Baobao Chang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Recent advances in retrieval-augmented generation (RAG) have substantially improved question-answering systems, particularly for factoid ‘5Ws’ questions. However, significant challenges remain when addressing ‘1H’ questions, specifically how-to questions, which are integral for decision-making and require dynamic, step-by-step responses. The key limitation lies in the prevalent data organization paradigm, chunk, which commonly divides documents into fixed-size segments, and disrupts the logical coherence and connections within the context. To address this, we propose THREAD, a novel data organization paradigm enabling systems to handle how-to questions more effectively. Specifically, we introduce a new knowledge granularity, ‘logic unit’ (LU), where large language models transform documents into more structured and loosely interconnected LUs. Extensive experiments across both open-domain and industrial settings show that THREAD outperforms existing paradigms significantly, improving the success rate of handling how-to questions by 21% to 33%. Additionally, THREAD demonstrates high adaptability across diverse document formats, reducing retrieval information by up to 75% compared to chunk, and also shows better generalizability to ‘5Ws’ questions, such as multi-hop questions, outperforming other paradigms.