With the rise of Speech Large Language Models (SpeechLLMs), two dominant approaches have emerged for speech processing: discrete tokens and continuous features. Each approach has demonstrated strong capabilities in audio-related processing tasks. However, the performance gap between these two paradigms has not been thoroughly explored. To address this gap, we present a fair comparison of self-supervised learning (SSL)-based discrete and continuous features under the same experimental settings. We evaluate their performance across six spoken language understanding-related tasks using both small and large-scale LLMs (Qwen1.5-0.5B and Llama3.1-8B). We further conduct in-depth analyses, including efficient comparison, SSL layer analysis, LLM layer analysis, and robustness comparison. Our findings reveal that continuous features generally outperform discrete tokens in various tasks. Each speech processing method exhibits distinct characteristics and patterns in how it learns and processes speech information. We hope our results will provide valuable insights to advance spoken language understanding in SpeechLLMs.
Making moral judgments is an essential step toward developing ethical AI systems. Prevalent approaches are mostly implemented in a bottom-up manner, which uses a large set of annotated data to train models based on crowd-sourced opinions about morality. These approaches have been criticized for potentially overgeneralizing a limited group of annotators’ moral stances and lacking explainability. This work proposes a flexible top-down framework to steer (Large) Language Models to perform moral reasoning with well-established moral theories from interdisciplinary research. The theory-guided top-down framework can incorporate various moral theories. Our experiments demonstrate the effectiveness of the proposed framework on datasets derived from moral theories. Furthermore, we show the alignment between different moral theories and existing morality datasets. Our analysis exhibits the potential and flaws in existing resources (models and datasets) in developing explainable moral judgment-making systems.
MultiDoc2Dial presents an important challenge on modeling dialogues grounded with multiple documents. This paper proposes a pipeline system of “retrieve, re-rank, and generate”, where each component is individually optimized. This enables the passage re-ranker and response generator to fully exploit training with ground-truth data. Furthermore, we use a deep cross-encoder trained with localized hard negative passages from the retriever. For the response generator, we use grounding span prediction as an auxiliary task to be jointly trained with the main task of response generation. We also adopt a passage dropout and regularization technique to improve response generation performance. Experimental results indicate that the system clearly surpasses the competitive baseline and our team CPII-NLP ranked 1st among the public submissions on ALL four leaderboards based on the sum of F1, SacreBLEU, METEOR and RougeL scores.