JoongHoon Kim


2025

pdf bib
CheckEval: A reliable LLM-as-a-Judge framework for evaluating text generation using checklists
Yukyung Lee | JoongHoon Kim | Jaehee Kim | Hyowon Cho | Jaewook Kang | Pilsung Kang | Najoung Kim
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Existing LLM-as-a-Judge approaches for evaluating text generation suffer from rating inconsistencies, with low agreement and high rating variance across different evaluator models. We attribute this to subjective evaluation criteria combined with Likert scale scoring in existing protocols. To address this issue, we introduce CheckEval, a checklist-based evaluation framework that improves rating reliability via decomposed binary questions. Through experiments with 12 evaluator models across multiple datasets, we first demonstrate that CheckEval strongly correlates with human judgments. More importantly, CheckEval dramatically improves the average agreement across evaluator models by 0.45 and reduces the score variance. CheckEval scores furthermore have the benefit of being more interpretable because it decomposes evaluation criteria into traceable binary decisions, allowing analyses of specific attributes driving quality judgments.

2023

pdf bib
Which is better? Exploring Prompting Strategy For LLM-based Metrics
JoongHoon Kim | Sangmin Lee | Seung Hun Han | Saeran Park | Jiyoon Lee | Kiyoon Jeong | Pilsung Kang
Proceedings of the 4th Workshop on Evaluation and Comparison of NLP Systems

This paper describes the DSBA submissions to the Prompting Large Language Models as Explainable Metrics shared task, where systems were submitted to two tracks: small and large summarization tracks. With advanced Large Language Models (LLMs) such as GPT-4, evaluating the quality of Natural Language Generation (NLG) has become increasingly paramount. Traditional similarity-based metrics such as BLEU and ROUGE have shown to misalign with human evaluation and are ill-suited for open-ended generation tasks. To address this issue, we explore the potential capability of LLM-based metrics, especially leveraging open-source LLMs. In this study, wide range of prompts and prompting techniques are systematically analyzed with three approaches: prompting strategy, score aggregation, and explainability. Our research focuses on formulating effective prompt templates, determining the granularity of NLG quality scores and assessing the impact of in-context examples on LLM-based evaluation. Furthermore, three aggregation strategies are compared to identify the most reliable method for aggregating NLG quality scores. To examine explainability, we devise a strategy that generates rationales for the scores and analyzes the characteristics of the explanation produced by the open-source LLMs. Extensive experiments provide insights regarding evaluation capabilities of open-source LLMs and suggest effective prompting strategies.