Joon Sung Park


2025

pdf bib
Finetuning LLMs for Human Behavior Prediction in Social Science Experiments
Akaash Kolluri | Shengguang Wu | Joon Sung Park | Michael S. Bernstein
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Large language models (LLMs) offer a powerful opportunity to simulate the results of social science experiments. In this work, we demonstrate that finetuning LLMs directly on individual-level responses from past experiments meaningfully improves the accuracy of such simulations. We construct SocSci210 via an automatic pipeline, a dataset comprising 2.9 million responses from 400,491 participants in 210 open-source social science experiments. Through finetuning, we achieve multiple levels of generalization. In completely unseen studies, our strongest model, Socrates-Qwen-14B, produces predictions that are 36% more aligned with distributions of human responses to diverse outcome questions under varying conditions relative to its base model (Qwen2.5-14B), outperforming GPT-4o by 15%. By finetuning on a subset of conditions in a study, generalization to new unseen conditions is particularly robust, improving by 71%. Since SocSci210 contains rich demographic information, we reduce demographic parity difference, a measure of bias, by 10.6% through finetuning. Because social sciences routinely generate rich, topic-specific datasets, our findings indicate that finetuning on such data could enable more accurate simulations for experimental hypothesis screening. We release our data, models and finetuning code.

2024

pdf bib
Proceedings of the 1st Workshop on Personalization of Generative AI Systems (PERSONALIZE 2024)
Ameet Deshpande | EunJeong Hwang | Vishvak Murahari | Joon Sung Park | Diyi Yang | Ashish Sabharwal | Karthik Narasimhan | Ashwin Kalyan
Proceedings of the 1st Workshop on Personalization of Generative AI Systems (PERSONALIZE 2024)