With the growing demand to fit fine-grained user intents, faceted query-by-example (QBE), which retrieves similar documents conditioned on specific facets, has gained recent attention. However, prior approaches mainly depend on document-level comparisons using basic indicators like citations due to the lack of facet-level relevance datasets; yet, this limits their use to citation-based domains and fails to capture the intricacies of facet constraints. In this paper, we propose a multi-facet blending (FaBle) augmentation method, which exploits modularity by decomposing and recomposing to explicitly synthesize facet-specific training sets. We automatically decompose documents into facet units and generate (ir)relevant pairs by leveraging LLMs’ intrinsic distinguishing capabilities; then, dynamically recomposing the units leads to facet-wise relevance-informed document pairs. Our modularization eliminates the need for pre-defined facet knowledge or labels. Further, to prove the FaBle’s efficacy in a new domain beyond citation-based scientific paper retrieval, we release a benchmark dataset for educational exam item QBE. FaBle augmentation on 1K documents remarkably assists training in obtaining facet conditional embeddings.
Despite bilingual speakers frequently using mixed-language queries in web searches, Information Retrieval (IR) research on them remains scarce. To address this, we introduce ***MiLQ***, ***Mi***xed-***L***anguage ***Q***uery test set, the first public benchmark of mixed-language queries, qualified as realistic and relatively preferred. Experiments show that multilingual IR models perform moderately on MiLQ and inconsistently across native, English, and mixed-language queries, also suggesting code-switched training data’s potential for robust IR models handling such queries. Meanwhile, intentional English mixing in queries proves an effective strategy for bilinguals searching English documents, which our analysis attributes to enhanced token matching compared to native queries.
Retrieval-Augmented Generation (RAG) enhances Large Language Models (LLMs) by providing external knowledge for accurate and up-to-date responses. However, this reliance on external sources exposes a security risk; attackers can inject poisoned documents into the knowledge base to steer the generation process toward harmful or misleading outputs. In this paper, we propose Gradient-based Masked Token Probability (GMTP), a novel defense method to detect and filter out adversarially crafted documents. Specifically, GMTP identifies high-impact tokens by examining gradients of the retriever’s similarity function. These key tokens are then masked, and their probabilities are checked via a Masked Language Model (MLM). Since injected tokens typically exhibit markedly low masked-token probabilities, this enables GMTP to easily detect malicious documents and achieve high-precision filtering. Experiments demonstrate that GMTP is able to eliminate over 90% of poisoned content while retaining relevant documents, thus maintaining robust retrieval and generation performance across diverse datasets and adversarial settings.
Legal Passage Retrieval (LPR) systems are crucial as they help practitioners save time when drafting legal arguments. However, it remains an underexplored avenue. One primary reason is the significant vocabulary mismatch between the query and the target passage. To address this, we propose a simple yet effective method, the Generative query REwriter (GuRE). We leverage the generative capabilities of Large Language Models (LLMs) by training the LLM for query rewriting. "Rewritten queries" help retrievers to retrieve target passages by mitigating vocabulary mismatch. Experimental results show that GuRE significantly improves performance in a retriever-agnostic manner, outperforming all baseline methods. Further analysis reveals that different training objectives lead to distinct retrieval behaviors, making GuRE more suitable than direct retriever fine-tuning for real-world applications. Codes are avaiable at github.com/daehuikim/GuRE.