Jinwoo Shin


2025

pdf bib
Accelerated Test-Time Scaling with Model-Free Speculative Sampling
Woomin Song | Saket Dingliwal | Sai Muralidhar Jayanthi | Bhavana Ganesh | Jinwoo Shin | Aram Galstyan | Sravan Babu Bodapati
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Language models have demonstrated remarkable capabilities in reasoning tasks through test-time scaling techniques like best-of-N sampling and tree search. However, these approaches often demand substantial computational resources, creating a critical trade-off between performance and efficiency. We introduce STAND (STochastic Adaptive N-gram Drafting), a novel model-free speculative decoding approach that exploits the inherent redundancy in reasoning trajectories to achieve significant acceleration without compromising accuracy. Our analysis shows that reasoning paths frequently reuse similar reasoning patterns, enabling efficient model-free token prediction without requiring separate draft models. By introducing stochastic drafting and preserving probabilistic information through a memory-efficient logit-based N-gram module, combined with optimized Gumbel-Top-K sampling and data-driven tree construction, STAND significantly improves token acceptance rates. Extensive evaluations across multiple models and reasoning tasks (AIME-2024, GPQA-Diamond, and LiveCodeBench) demonstrate that STAND reduces inference latency by 60-65% compared to standard autoregressive decoding while maintaining accuracy. Furthermore, STAND consistently outperforms state-of-the-art speculative decoding methods across diverse inference patterns, including single-trajectory decoding, batch decoding, and test-time tree search. As a model-free approach, STAND can be applied to any existing language model without additional training, making it a powerful plug-and-play solution for accelerating language model reasoning.

pdf bib
Personalized Language Models via Privacy-Preserving Evolutionary Model Merging
Kyuyoung Kim | Jinwoo Shin | Jaehyung Kim
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Personalization in language models aims to tailor model behavior to individual users or user groups. Prompt-based methods incorporate user preferences into queries, while training-based methods encode them into model parameters. Model merging has also been explored for personalization under limited data. However, existing methods often fail to directly optimize task-specific utility and lack explicit mechanisms for privacy preservation. To address the limitations, we propose Privacy-Preserving Model Merging via Evolutionary Algorithms (PriME), a novel personalization approach that employs gradient-free methods to directly optimize utility while reducing privacy risks. By integrating privacy preservation into the optimization objective, PriME creates personalized modules that effectively capture target user preferences while minimizing privacy risks for data-sharing users. Experiments on the LaMP benchmark show that PriME consistently outperforms a range of baselines, achieving up to a 45% improvement in task performance. Further analysis demonstrates that PriME achieves a superior privacy-utility trade-off compared to a prior state-of-the-art, with enhanced robustness to membership inference attacks and greater utility in capturing user preferences.

pdf bib
Debiasing Online Preference Learning via Preference Feature Preservation
Dongyoung Kim | Jinsung Yoon | Jinwoo Shin | Jaehyung Kim
Findings of the Association for Computational Linguistics: ACL 2025

Recent preference learning frameworks for large language models (LLMs) simplify human preferences with binary pairwise comparisons and scalar rewards. This simplification could make LLMs’ responses biased to mostly preferred features, and would be exacerbated during the iterations of online preference learning steps. To address these challenges, we propose a novel framework coined PFP (Preference Feature Preservation). The key idea of PFP is maintaining the distribution of human preference features and utilizing such rich signals throughout the online preference learning process. Specifically, PFP first extract preference features from offline pairwise human preference data and trains a feature classifier. Then, using trained classifier and the distribution preserving optimization, PFP maps appropriate preference features for a new input instruction during online learning. Lastly, PFP trains LLM using the existing preference learning method, by incorporating the preference feature into system prompts and enabling LLM to explicitly handle various human preferences. Our experiments demonstrate that PFP successfully mitigates the bias in preference features during online learning, and hence achieves superior performance compared to previous preference learning methods on standard benchmarks to evaluate LLM alignment.

2024

pdf bib
Margin Matching Preference Optimization: Enhanced Model Alignment with Granular Feedback
Kyuyoung Kim | Ah Jeong Seo | Hao Liu | Jinwoo Shin | Kimin Lee
Findings of the Association for Computational Linguistics: EMNLP 2024

Large language models (LLMs) fine-tuned with alignment techniques, such as reinforcement learning from human feedback, have been instrumental in developing some of the most capable AI systems to date. Despite their success, existing methods typically rely on simple binary labels, such as those indicating preferred outputs in pairwise preferences, which fail to capture the subtle differences in relative quality between pairs. To address this limitation, we introduce an approach called Margin Matching Preference Optimization (MMPO), which incorporates relative quality margins into optimization, leading to improved LLM policies and reward models. Specifically, given quality margins in pairwise preferences, we design soft target probabilities based on the Bradley-Terry model, which are then used to train models with the standard cross-entropy objective. Experiments with both human and AI feedback data demonstrate that MMPO consistently outperforms baseline methods, often by a substantial margin, on popular benchmarks including MT-bench and RewardBench. Notably, the 7B model trained with MMPO achieves state-of-the-art performance on RewardBench as of June 2024, outperforming other models of the same scale. Our analysis also shows that MMPO is more robust to overfitting, leading to better-calibrated models.

2023

pdf bib
infoVerse: A Universal Framework for Dataset Characterization with Multidimensional Meta-information
Jaehyung Kim | Yekyung Kim | Karin de Langis | Jinwoo Shin | Dongyeop Kang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The success of NLP systems often relies on the availability of large, high-quality datasets. However, not all samples in these datasets are equally valuable for learning, as some may be redundant or noisy. Several methods for characterizing datasets based on model-driven meta-information (e.g., model’s confidence) have been developed, but the relationship and complementary effects of these methods have received less attention. In this paper, we introduce infoVerse, a universal framework for dataset characterization, which provides a new feature space that effectively captures multidimensional characteristics of datasets by incorporating various model-driven meta-information. infoVerse reveals distinctive regions of the dataset that are not apparent in the original semantic space, hence guiding users (or models) in identifying which samples to focus on for exploration, assessment, or annotation. Additionally, we propose a novel sampling method on infoVerse to select a set of data points that maximizes informativeness. In three real-world applications (data pruning, active learning, and data annotation), the samples chosen on infoVerse space consistently outperform strong baselines in all applications. Our code and demo are publicly available.