Jingyu Xiao


2025

pdf bib
SlideCoder: Layout-aware RAG-enhanced Hierarchical Slide Generation from Design
Wenxin Tang | Jingyu Xiao | Wenxuan Jiang | Xi Xiao | Yuhang Wang | Xuxin Tang | Qing Li | Yuehe Ma | Junliang Liu | Shisong Tang | Michael R. Lyu
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Manual slide creation is labor-intensive and requires expert prior knowledge. Existing natural language-based LLM generation methods struggle to capture the visual and structural nuances of slide designs. To address this, we formalize the Reference Image to Slide Generation task and propose Slide2Code, the first benchmark with difficulty-tiered samples based on a novel Slide Complexity Metric. We introduce SlideCoder, a layout-aware, retrieval-augmented framework for generating editable slides from reference images. SlideCoder integrates a Color Gradient-based Segmentation algorithm and a Hierarchical Retrieval-Augmented Generation method to decompose complex tasks and enhance code generation. We also release SlideMaster, a 7B open-source model fine-tuned with improved reverse-engineered data. Experiments show that SlideCoder outperforms state-of-the-art baselines by up to 40.5 points, demonstrating strong performance across layout fidelity, execution accuracy, and visual consistency. Our code is available at https://github.com/vinsontang1/SlideCoder.

pdf bib
QueryAttack: Jailbreaking Aligned Large Language Models Using Structured Non-natural Query Language
Qingsong Zou | Jingyu Xiao | Qing Li | Zhi Yan | Yuhang Wang | Li Xu | Wenxuan Wang | Kuofeng Gao | Ruoyu Li | Yong Jiang
Findings of the Association for Computational Linguistics: ACL 2025

Recent advances in large language models (LLMs) have demonstrated remarkable potential in the field of natural language processing. Unfortunately, LLMs face significant security and ethical risks. Although techniques such as safety alignment are developed for defense, prior researches reveal the possibility of bypassing such defenses through well-designed jailbreak attacks. In this paper, we propose QueryAttack, a novel framework to examine the generalizability of safety alignment. By treating LLMs as knowledge databases, we translate malicious queries in natural language into structured non-natural query language to bypass the safety alignment mechanisms of LLMs. We conduct extensive experiments on mainstream LLMs, and the results show that QueryAttack not only can achieve high attack success rates (ASRs), but also can jailbreak various defense methods. Furthermore, we tailor a defense method against QueryAttack, which can reduce ASR by up to 64% on GPT-4-1106. Our code is available at https://anonymous.4open.science/r/QueryAttack-334B.