Large language models (LLMs) generate human-aligned content under certain safety constraints. However, the current known technique “jailbreak prompt” can circumvent safety-aligned measures and induce LLMs to output malicious content. Research on Jailbreaking can help identify vulnerabilities in LLMs and guide the development of robust security frameworks. To circumvent the issue of attack templates becoming obsolete as models evolve, existing methods adopt iterative mutation and dynamic optimization to facilitate more automated jailbreak attacks. However, these methods face two challenges: inefficiency and repetitive optimization, as they overlook the value of past attack experiences. To better integrate past attack experiences to assist current jailbreak attempts, we propose the JailExpert, an automated jailbreak framework, which is the first to achieve a formal representation of experience structure, group experiences based on semantic drift, and support the dynamic updating of the experience pool. Extensive experiments demonstrate that JailExpert significantly improves both attack effectiveness and efficiency. Compared to the current state-of-the-art black-box jailbreak method, JailExpert achieves an average increase of 24% in attack success rate and 2.7 times improvement in attack efficiency.
Few-shot named entity recognition (NER) enables us to build a NER system for a new domain using very few labeled examples. However, existing prototypical networks for this task suffer from roughly estimated label dependency and closely distributed prototypes, thus often causing misclassifications. To address the above issues, we propose EP-Net, an Entity-level Prototypical Network enhanced by dispersedly distributed prototypes. EP-Net builds entity-level prototypes and considers text spans to be candidate entities, so it no longer requires the label dependency. In addition, EP-Net trains the prototypes from scratch to distribute them dispersedly and aligns spans to prototypes in the embedding space using a space projection. Experimental results on two evaluation tasks and the Few-NERD settings demonstrate that EP-Net consistently outperforms the previous strong models in terms of overall performance. Extensive analyses further validate the effectiveness of EP-Net.
Span-based joint extraction models have shown their efficiency on entity recognition and relation extraction. These models regard text spans as candidate entities and span tuples as candidate relation tuples. Span semantic representations are shared in both entity recognition and relation extraction, while existing models cannot well capture semantics of these candidate entities and relations. To address these problems, we introduce a span-based joint extraction framework with attention-based semantic representations. Specially, attentions are utilized to calculate semantic representations, including span-specific and contextual ones. We further investigate effects of four attention variants in generating contextual semantic representations. Experiments show that our model outperforms previous systems and achieves state-of-the-art results on ACE2005, CoNLL2004 and ADE.