Jiayu Chen


2025

pdf bib
VERITAS: Leveraging Vision Priors and Expert Fusion to Improve Multimodal Data
Tingqiao Xu | Ziru Zeng | Jiayu Chen
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

The quality of supervised fine-tuning (SFT) data is crucial for the performance of large multimodal models (LMMs), yet current data enhancement methods often suffer from factual errors and hallucinations due to inadequate visual perception. To address this challenge, we propose VERITAS, a pipeline that systematically integrates vision priors and multiple state-of-the-art LMMs with statistical methods to enhance SFT data quality. VERITAS leverages visual recognition models (RAM++) and OCR systems (PP-OCRv4) to extract structured vision priors, which are combined with images, questions, and answers. Three LMMs (GPT-4o, Gemini-2.5-Pro, Doubao-1.5-pro) evaluate the original answers, providing critique rationales and scores that are statistically fused into a high-confidence consensus score serving as ground truth. Using this consensus, we train a lightweight critic model via Group Relative Policy Optimization (GRPO), enhancing reasoning capabilities efficiently. Each LMM then refines the original answers based on the critiques, generating new candidate answers; we select the highest-scoring one as the final refined answer. Experiments across six multimodal benchmarks demonstrate that models fine-tuned with data processed by VERITAS consistently outperform those using raw data, particularly in text-rich and fine-grained reasoning tasks. Our critic model exhibits enhanced capability comparable to state-of-the-art LMMs while being significantly more efficient. We release our pipeline, datasets, and model checkpoints to advance research in multimodal data optimization.

2019

pdf bib
MrMep: Joint Extraction of Multiple Relations and Multiple Entity Pairs Based on Triplet Attention
Jiayu Chen | Caixia Yuan | Xiaojie Wang | Ziwei Bai
Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)

This paper focuses on how to extract multiple relational facts from unstructured text. Neural encoder-decoder models have provided a viable new approach for jointly extracting relations and entity pairs. However, these models either fail to deal with entity overlapping among relational facts, or neglect to produce the whole entity pairs. In this work, we propose a novel architecture that augments the encoder and decoder in two elegant ways. First, we apply a binary CNN classifier for each relation, which identifies all possible relations maintained in the text, while retaining the target relation representation to aid entity pair recognition. Second, we perform a multi-head attention over the text and a triplet attention with the target relation interacting with every token of the text to precisely produce all possible entity pairs in a sequential manner. Experiments on three benchmark datasets show that our proposed method successfully addresses the multiple relations and multiple entity pairs even with complex overlapping and significantly outperforms the state-of-the-art methods.