Jianwen Xie


2025

pdf bib
DEL-ToM: Inference-Time Scaling for Theory-of-Mind Reasoning via Dynamic Epistemic Logic
Yuheng Wu | Jianwen Xie | Denghui Zhang | Zhaozhuo Xu
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Theory-of-Mind (ToM) tasks pose a unique challenge for large language models (LLMs), which often lack the capability for dynamic logical reasoning. In this work, we propose DEL-ToM, a framework that improves verifiable ToM reasoning through inference-time scaling rather than architectural changes. Our approach decomposes ToM tasks into a sequence of belief updates grounded in Dynamic Epistemic Logic (DEL), enabling structured and verifiable dynamic logical reasoning. We use data generated automatically via a DEL simulator to train a verifier, which we call the Process Belief Model (PBM), to score each belief update step. During inference, the PBM evaluates candidate belief traces from the LLM and selects the highest-scoring one. This allows LLMs to allocate extra inference-time compute to yield more transparent reasoning. Experiments across model scales and benchmarks show that DEL-ToM consistently improves performance, demonstrating that verifiable belief supervision significantly enhances LLMs’ ToM capabilities without retraining. Code is available at https://github.com/joel-wu/DEL-ToM.

pdf bib
Word Salad Chopper: Reasoning Models Waste A Ton Of Decoding Budget On Useless Repetitions, Self-Knowingly
Wenya Xie | Shaochen Zhong | Hoang Anh Duy Le | Zhaozhuo Xu | Jianwen Xie | Zirui Liu
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Large Reasoning Models (LRMs) are often bottlenecked by the high cost of output tokens. We show that a significant portion of these tokens are useless self-repetitions — what we call “word salad” — that exhaust the decoding budget without adding value. Interestingly, we observe that LRMs are self-aware when trapped in these loops: the hidden states of ‘‘ tokens trailing each reasoning chunk exhibit patterns that allow us to detect word salad behavior on-the-fly via a single linear classifier. Once detected, a simple chop appended by a straightforward regeneration prompt yields substantial length savings with minimal quality loss. Our work offers WordSaladChopper (WSC) — a lightweight, turnkey component for LRM that is minimally invasive to its reasoning trajectory. Given its low overhead, strong savings, and the lack of semantic value of word salad tokens, we believe it is not too far-fetched to argue that WSC — or a similar component — is a must-have for all LRM applications with user experience in mind.