Jianqiao Lu


2025

pdf bib
UNComp: Can Matrix Entropy Uncover Sparsity? — A Compressor Design from an Uncertainty-Aware Perspective
Jing Xiong | Jianghan Shen | Fanghua Ye | Chaofan Tao | Zhongwei Wan | Jianqiao Lu | Xun Wu | Chuanyang Zheng | Zhijiang Guo | Min Yang | Lingpeng Kong | Ngai Wong
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Deploying large language models (LLMs) for long-context inference remains challenging due to their substantial memory and computational demands. While techniques such as Key-Value (KV) cache compression are designed to reduce memory usage, they often neglect the structured sparsity inherent in the relationship between hidden states and their corresponding KV cache. In this work, we explore the role of uncertainty as a potential indicator of sparsity within LLMs. We propose UNComp, an uncertainty-aware framework that leverages truncated matrix entropy to identify areas of low information content, thereby revealing sparsity patterns that can be used for adaptive compression. Unlike traditional methods that apply uniform compression, UNComp dynamically adjusts its approach to compression, guided by uncertainty measures that reflect the importance of various model components. Our analysis shows that sparsity patterns, when derived from uncertainty estimates, can be exploited to reveal special long-range dependencies, such as retrieval heads and retrieval layers. This perspective not only enhances our understanding of how compression can be optimized but also provides new insights into the inherent sparsity of LLMs during long-context inference. By focusing on uncertainty to analyze the sparsity pattern in detail, UNComp reduces the KV cache size to 4.74% of the original, achieves a 6% prefill speedup, and improves throughput by 6.4× — not only delivering strong lossless compression performance, but also validating the effectiveness of the underlying theoretical tool. Our codes are submitted with the paper.

pdf bib
Rethinking Stateful Tool Use in Multi-Turn Dialogues: Benchmarks and Challenges
Hongru Wang | Wenyu Huang | Yufei Wang | Yuanhao Xi | Jianqiao Lu | Huan Zhang | Nan Hu | Zeming Liu | Jeff Z. Pan | Kam-Fai Wong
Findings of the Association for Computational Linguistics: ACL 2025

Existing benchmarks that assess Language Models (LMs) as Language Agents (LAs) for tool use primarily focus on stateless, single-turn interactions or partial evaluations, such as tool selection in a single turn, overlooking the inherent stateful nature of interactions in multi-turn applications. To fulfill this gap, we propose DialogTool, a multi-turn dialogue dataset with stateful tool interactions considering the whole life cycle of tool use, across six key tasks in three stages: 1) tool creation; 2) tool utilization: tool awareness, tool selection, tool execution; and 3) role-consistent response: response generation and role play. Furthermore, we build VirtualMobile – an embodied virtual mobile evaluation environment to simulate API calls and assess the robustness of the created APIs. Taking advantage of these artifacts, we conduct comprehensive evaluation on 13 distinct open- and closed-source LLMs and provide detailed analysis at each stage, revealing that the existing state-of-the-art LLMs still cannot perform well to use tools over long horizons .

2024

pdf bib
Planning, Creation, Usage: Benchmarking LLMs for Comprehensive Tool Utilization in Real-World Complex Scenarios
Shijue Huang | Wanjun Zhong | Jianqiao Lu | Qi Zhu | Jiahui Gao | Weiwen Liu | Yutai Hou | Xingshan Zeng | Yasheng Wang | Lifeng Shang | Xin Jiang | Ruifeng Xu | Qun Liu
Findings of the Association for Computational Linguistics: ACL 2024

The recent trend of using Large Language Models (LLMs) as tool agents in real-world applications underscores the necessity for comprehensive evaluations of their capabilities, particularly in complex scenarios involving planning, creating, and using tools. However, existing benchmarks typically focus on simple synthesized queries that do not reflect real-world complexity, thereby offering limited perspectives in evaluating tool utilization. To address this issue, we present UltraTool, a novel benchmark designed to improve and evaluate LLMs’ ability in tool utilization within real-world scenarios. UltraTool focuses on the entire process of using tools - from planning and creating to applying them in complex tasks. It emphasizes real-world complexities, demanding accurate, multi-step planning for effective problem-solving. A key feature of UltraTool is its independent evaluation of planning with natural language, which happens before tool usage and simplifies the task solving by mapping out the intermediate steps. Thus, unlike previous work, it eliminates the restriction of pre-defined toolset. Through extensive experiments on various LLMs, we offer novel insights into the evaluation of capabilities of LLMs in tool utilization, thereby contributing a fresh perspective to this rapidly evolving field. The benchmark is publicly available at https://github.com/JoeYing1019/UltraTool.

2023

pdf bib
Improving End-to-End Speech Processing by Efficient Text Data Utilization with Latent Synthesis
Jianqiao Lu | Wenyong Huang | Nianzu Zheng | Xingshan Zeng | Yu Yeung | Xiao Chen
Findings of the Association for Computational Linguistics: EMNLP 2023

Training a high performance end-to-end speech (E2E) processing model requires an enormous amount of labeled speech data, especially in the era of data-centric artificial intelligence. However, labeled speech data are usually scarcer and more expensive for collection, compared to textual data. We propose Latent Synthesis (LaSyn), an efficient textual data utilization framework for E2E speech processing models. We train a latent synthesizer to convert textual data into an intermediate latent representation of a pre-trained speech model. These pseudo acoustic representations of textual data augment acoustic data for model training. We evaluate LaSyn on low-resource automatic speech recognition (ASR) and spoken language understanding (SLU) tasks. For ASR, LaSyn improves an E2E baseline trained on LibriSpeech train-clean-100, with relative word error rate reductions over 22.3% on different test sets. For SLU, LaSyn improves our E2E baseline by absolute 4.1% for intent classification accuracy and 3.8% for slot filling SLU-F1 on SLURP, and absolute 4.49% and 2.25% for exact match (EM) and EM-Tree accuracies on STOP respectively. With fewer parameters, the results of LaSyn are competitive to published state-of-the-art works. The results demonstrate the quality of the augmented training data.