Jianping Fan


2025

pdf bib
MAPS: Motivation-Aware Personalized Search via LLM-Driven Consultation Alignment
Weicong Qin | Yi Xu | Weijie Yu | Chenglei Shen | Ming He | Jianping Fan | Xiao Zhang | Jun Xu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Personalized product search aims to retrieve and rank items that match users’ preferences and search intent. Despite their effectiveness, existing approaches typically assume that users’ query fully captures their real motivation. However, our analysis of a real-world e-commerce platform reveals that users often engage in relevant consultations before searching, indicating they refine intents through consultations based on motivation and need. The implied motivation in consultations is a key enhancing factor for personalized search. This unexplored area comes with new challenges including aligning contextual motivations with concise queries, bridging the category-text gap, and filtering noise within sequence history. To address these, we propose a Motivation-Aware Personalized Search (MAPS) method. It embeds queries and consultations into a unified semantic space via LLMs, utilizes a Mixture of Attention Experts (MoAE) to prioritize critical semantics, and introduces dual alignment: (1) contrastive learning aligns consultations, reviews, and product features; (2) bidirectional attention integrates motivation-aware embeddings with user preferences. Extensive experiments on real and synthetic data show MAPS outperforms existing methods in both retrieval and ranking tasks. Code and supplementary materials are available at: https://github.com/E-qin/MAPS.

pdf bib
ORMind: A Cognitive-Inspired End-to-End Reasoning Framework for Operations Research
Zhiyuan Wang | Bokui Chen | Yinya Huang | Qingxing Cao | Ming He | Jianping Fan | Xiaodan Liang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track)

Operations research (OR) is widely deployed to solve critical decision-making problems with complex objectives and constraints, impacting manufacturing, logistics, finance, and healthcare outcomes. While Large Language Models (LLMs) have shown promising results in various domains, their practical application in industry-relevant operations research (OR) problems presents significant challenges and opportunities. Preliminary industrial applications of LLMs for operations research face two critical deployment challenges: 1) Self-correction focuses on code syntax rather than mathematical accuracy, causing costly errors; 2) Complex expert selection creates unpredictable workflows that reduce transparency and increase maintenance costs, making them impractical for time-sensitive business applications. To address these business limitations, we introduce ORMind, a cognitive-inspired framework that enhances optimization through counterfactual reasoning. Our approach emulates human cognition—implementing an end-to-end workflow that systematically transforms requirements into mathematical models and executable solver code. It is currently being tested internally in Lenovo’s AI Assistant, with plans to enhance optimization capabilities for both business and consumer customers. Experiments demonstrate that ORMind outperforms existing methods, achieving a 9.5% improvement on the NL4Opt dataset and a 14.6% improvement on the ComplexOR dataset.

pdf bib
Analyzing the Effects of Supervised Fine-Tuning on Model Knowledge from Token and Parameter Levels
Junjie Ye | Yuming Yang | Yang Nan | Shuo Li | Qi Zhang | Tao Gui | Xuanjing Huang | Peng Wang | Zhongchao Shi | Jianping Fan
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Large language models (LLMs) acquire substantial world knowledge during pre-training, which is further shaped by post-training techniques such as supervised fine-tuning (SFT). However, the impact of SFT on a model’s knowledge remains underexplored, limiting our ability to control knowledge behavior in fine-tuned models. To address this gap, we evaluate closed-book question answering (CBQA) performance across five LLMs from the LLaMA-2 and LLaMA-3 families. Surprisingly, models fine-tuned on 1,920 samples perform up to 14% worse than those fine-tuned on only 240 samples. Furthermore, varying the level of knowledge mastery in the fine-tuning data leads to performance fluctuations of over 12%. To investigate these effects, we analyze model behavior at both the token and parameter levels. Our analysis reveals that up to 90% of parameter updates during SFT do not contribute to knowledge enhancement. Restoring these updates can improve performance on the CBQA task, depending on the characteristics of the fine-tuning data. These insights offer practical guidance for developing fine-tuning strategies that more effectively strengthen model knowledge.

pdf bib
Similarity = Value? Consultation Value-Assessment and Alignment for Personalized Search
Weicong Qin | Yi Xu | Weijie Yu | Teng Shi | Chenglei Shen | Ming He | Jianping Fan | Xiao Zhang | Jun Xu
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Personalized search systems in e-commerce platforms increasingly involve user interactions with AI assistants, where users consult about products, usage scenarios, and more. Leveraging consultation to personalize search services is trending. Existing methods typically rely on semantic similarity to align historical consultations with current queries due to the absence of ‘value’ labels, but we observe that semantic similarity alone often fails to capture the true value of consultation for personalization. To address this, we propose a consultation value assessment framework that evaluates historical consultations from three novel perspectives: (1) Scenario Scope Value, (2) Posterior Action Value, and (3) Time Decay Value. Based on this, we introduce VAPS, a value-aware personalized search model that selectively incorporates high-value consultations through a consultation–user action interaction module and an explicit objective that aligns consultations with user actions. Experiments on both public and commercial datasets show that VAPS consistently outperforms baselines in both retrieval and ranking tasks. Codes are available at https://github.com/E-qin/VAPS.

pdf bib
Instruct-of-Reflection: Enhancing Large Language Models Iterative Reflection Capabilities via Dynamic-Meta Instruction
Liping Liu | Chunhong Zhang | Likang Wu | Chuang Zhao | Zheng Hu | Ming He | Jianping Fan
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Self-reflection for Large LanguageModels (LLMs) has gained significant attention. Existing approaches involve models iterating and improving their previous responses based on LLMs’ internal reflection ability or external feedback. However, recent research has raised doubts about whether intrinsic self-correction without external feedback may even degrade performance. Based on our empirical evidence, we find that current static reflection methods may lead to redundant, drift, and stubborn issues. To mitigate this, we introduce **I**nstruct-**o**f-**R**eflec**t**ion (**IoRT**), a novel and general reflection framework that leverages dynamic-meta instruction to enhance the iterative reflection capability of LLMs. Specifically, we propose the instructor driven by the meta-thoughts and self-consistency classifier, generates various instructions, including refresh, stop, and select, to guide the next reflection iteration. Our experiments demonstrate that IoRT achieves an average improvement of 10.1% over established baselines in mathematical and commonsense reasoning tasks, highlighting its efficacy and applicability. Our code is available at https://github.com/llp635/IoRT.

2010

pdf bib
Fusion of Multiple Features and Ranking SVM for Web-based English-Chinese OOV Term Translation
Yuejie Zhang | Yang Wang | Lei Cen | Yanxia Su | Cheng Jin | Xiangyang Xue | Jianping Fan
Coling 2010: Posters