Retrieval-augmented generation (RAG) enhances the outputs of language models by integrating relevant information retrieved from external knowledge sources. However, when the retrieval process involves private data, RAG systems may face severe privacy risks, potentially leading to the leakage of sensitive information. To address this issue, we propose using synthetic data as a privacy-preserving alternative for the retrieval data. We propose SAGE, a novel two-stage synthetic data generation paradigm. In the stage-1, we employ an attribute-based extraction and generation approach to preserve key contextual information from the original data. In the stage-2, we further enhance the privacy properties of the synthetic data through an agent-based iterative refinement process. Extensive experiments demonstrate that using our synthetic data as the retrieval context achieves comparable performance to using the original data while substantially reducing privacy risks. Our work takes the first step towards investigating the possibility of generating high-utility and privacy-preserving synthetic data for RAG, opening up new opportunities for the safe application of RAG systems in various domains.
Multimodal Retrieval-Augmented Generation (MRAG) systems enhance LMMs by integrating external multimodal databases, but introduce unexplored privacy vulnerabilities. While text-based RAG privacy risks have been studied, multimodal data presents unique challenges. We provide the first systematic analysis of MRAG privacy vulnerabilities across vision-language and speech-language modalities. Using a novel compositional structured prompt attack in a black-box setting, we demonstrate how attackers can extract private information by manipulating queries. Our experiments reveal that LMMs can both directly generate outputs resembling retrieved content and produce descriptions that indirectly expose sensitive information, highlighting the urgent need for robust privacy-preserving MRAG techniques.
Retrieval-Augmented Generation (RAG) systems have shown promise in enhancing the performance of Large Language Models (LLMs). However, these systems face challenges in effectively integrating external knowledge with the LLM’s internal knowledge, often leading to issues with misleading or unhelpful information. This work aims to provide a systematic study on knowledge checking in RAG systems. We conduct a comprehensive analysis of LLM representation behaviors and demonstrate the significance of using representations in knowledge checking. Motivated by the findings, we further develop representation-based classifiers for knowledge filtering. We show substantial improvements in RAG performance, even when dealing with noisy knowledge databases. Our study provides new insights into leveraging LLM representations for enhancing the reliability and effectiveness of RAG systems.
Retrieval-augmented generation (RAG) is a powerful technique to facilitate language model generation with proprietary and private data, where data privacy is a pivotal concern. Whereas extensive research has demonstrated the privacy risks of large language models (LLMs), the RAG technique could potentially reshape the inherent behaviors of LLM generation, posing new privacy issues that are currently under-explored. To this end, we conduct extensive empirical studies with novel attack methods, which demonstrate the vulnerability of RAG systems on leaking the private retrieval database. Despite the new risks brought by RAG on the retrieval data, we further discover that RAG can be used to mitigate the old risks, i.e., the leakage of the LLMs’ training data. In general, we reveal many new insights in this paper for privacy protection of retrieval-augmented LLMs, which could benefit both LLMs and RAG systems builders.