Recent advances in multimodal large language models (MLLMs) and diffusion models (DMs) have opened new possibilities for AI-generated content. Yet, personalized cover image generation remains underexplored, despite its critical role in boosting user engagement on digital platforms. We propose ICG, a novel framework that integrates MLLM-based prompting with personalized preference alignment to generate high-quality, contextually relevant covers. ICG extracts semantic features from item titles and reference images via meta tokens, refines them with user embeddings, and injects the resulting personalized context into the diffusion model. To address the lack of labeled supervision, we adopt a multi-reward learning strategy that combines public aesthetic and relevance rewards with a personalized preference model trained from user behavior. Unlike prior pipelines relying on handcrafted prompts and disjointed modules, ICG employs an adapter to bridge MLLMs and diffusion models for end-to-end training. Experiments demonstrate that ICG significantly improves image quality, semantic fidelity, and personalization, leading to stronger user appeal and offline recommendation accuracy in downstream tasks. As a plug-and-play adapter bridging MLLMs and diffusion models, ICG is compatible with common checkpoints and requires no ground-truth labels during optimization.
Despite the remarkable success of transformer-based large language models (LLMs) across various domains, understanding and enhancing their mathematical capabilities remains a significant challenge. In this paper, we conduct a rigorous theoretical analysis of LLMs’ mathematical abilities, with a specific focus on their arithmetic performances. We identify numerical precision as a key factor that influences their effectiveness in arithmetical tasks. Our results show that Transformers operating with low numerical precision fail to address arithmetic tasks, such as iterated addition and integer multiplication, unless the model size grows super-polynomially with respect to the input length. In contrast, Transformers with standard numerical precision can efficiently handle these tasks with significantly smaller model sizes. We further support our theoretical findings through empirical experiments that explore the impact of varying numerical precision on arithmetic tasks, providing valuable insights for improving the mathematical reasoning capabilities of LLMs.
Despite exceptional capabilities in knowledge-intensive tasks, Large Language Models (LLMs) face a critical gap in understanding how they internalize new knowledge, particularly how acquired knowledge becomes structurally embedded in their neural computations. We address this issue through the lens of knowledge circuit evolution, identifying computational subgraphs that facilitate knowledge storage and processing. Our systematic analysis of circuit evolution throughout continual pre-training reveals several key findings: (1) the acquisition of new knowledge is influenced by its relevance to pre-existing knowledge; (2) the evolution of knowledge circuits exhibits a distinct phase shift from formation to optimization; (3) the evolution of knowledge circuits follows a deep-to-shallow pattern. These insights not only advance our theoretical understanding of the mechanisms of new knowledge acquisition in LLMs, but also provide potential implications for improving continual pre-training strategies to enhance model performance.