In this research, we introduce the Courtroom-LLM framework, a novel multi-LLM structure inspired by legal courtroom processes, aiming to enhance decision-making in ambiguous text classification scenarios. Our approach simulates a courtroom setting within LLMs, assigning roles similar to those of prosecutors, defense attorneys, and judges, to facilitate comprehensive analysis of complex textual cases. We demonstrate that this structured multi-LLM setup can significantly improve decision-making accuracy, particularly in ambiguous situations, by harnessing the synergistic effects of diverse LLM arguments. Our evaluations across various text classification tasks show that the Courtroom-LLM framework outperforms both traditional single-LLM classifiers and simpler multi-LLM setups. These results highlight the advantages of our legal-inspired model in improving decision-making for text classification.
Many statistical facts are conveyed through charts. While various methods have emerged for chart understanding, chart generation typically requires users to manually input code, intent, and other parameters to obtain the desired format on chart generation tools. Recently, the advent of image-generating Large Language Models has facilitated chart generation; however, even this process often requires users to provide numerous constraints for accurate results. In this paper, we propose a loop-based framework for automatically evolving charts in a multi-agent environment. Within this framework, three distinct agents—Chart Code Generator, Chart Replier, and Chart Quality Evaluator—collaborate for iterative, user-tailored chart generation using large language models. Our approach demonstrates an improvement of up to 29.97% in performance compared to first generation, while also reducing generation time by up to 86.9% compared to manual prompt-based methods, showcasing the effectiveness of this multi-agent collaboration in enhancing the quality and efficiency of chart generation.
While the abundance of rich and vast datasets across numerous fields has facilitated the advancement of natural language processing, sectors in need of specialized data types continue to struggle with the challenge of finding quality data. Our study introduces a novel guidance data augmentation technique utilizing abstracted context and sentence structures to produce varied sentences while maintaining context-entity relationships, addressing data scarcity challenges. By fostering a closer relationship between context, sentence structure, and role of entities, our method enhances data augmentation’s effectiveness. Consequently, by showcasing diversification in both entity-related vocabulary and overall sentence structure, and simultaneously improving the training performance of named entity recognition task.
Recent advancements in large language models have heavily relied on the large reward model from reinforcement learning from human feedback for fine-tuning. However, the use of a single reward model across various domains may not always be optimal, often requiring retraining from scratch when new domain data is introduced. To address these challenges, we explore the utilization of small language models operating in a domain-specific manner based on router mechanisms. Our three approaches are: 1) utilize mixture of experts to form a single reward model by modularizing an internal router and experts, 2) employing external router to select the appropriate reward model from multiple domain-specific models, and 3) the framework reduces parameter size by loading reward models and router adapters onto a single small language model using adapters. Experimental validation underscores the effectiveness of our approach, demonstrating performance comparable to baseline methods while also reducing the total parameter size.