Sparse autoencoders (SAEs) have emerged as a powerful analytical tool in mechanistic interpretability for large language models (LLMs), with growing success in applications beyond interpretability. Building on this momentum, we present a novel approach that leverages SAEs to enhance the general in-context learning (ICL) performance of LLMs.Specifically, we introduce Feature Detection through Prompt Variation (FDPV), which leverages the SAE’s remarkable ability to capture subtle differences between prompts, enabling efficient feature selection for downstream steering. In addition, we propose a novel steering method tailored to ICL—Selective In-Context Steering (SISTER)—grounded in recent insights from ICL research that LLMs utilize label words as key anchors. Our method yields a 3.5% average performance improvement across diverse text classification tasks and exhibits greater robustness to hyperparameter variations compared to standard steering approaches. Our code is available at https://github.com/ihcho2/SAE-ICL.
While large language models (LLMs) are dominating the field of natural language processing, it remains an open question how well these models can perform spatial reasoning. Contrary to recent studies suggesting that LLMs struggle with spatial reasoning tasks, we demonstrate in this paper that a novel prompting technique, termed Patient Visualization of Thought (Patient-VoT), can boost LLMs’ spatial reasoning abilities. The core idea behind Patient-VoT is to explicitly integrate *bullet lists, coordinates, and visualizations* into the reasoning process. By applying Patient-VoT, we achieve a significant boost in spatial reasoning performance compared to prior prompting techniques. We also show that integrating bullet lists into reasoning is effective in planning tasks, highlighting its general effectiveness across different applications.
There has been a growing body of work focusing on the in-context learning (ICL) abilities of large language models (LLMs). However, it is an open question how effective ICL can be. This paper presents Tutor-ICL, a simple prompting method for classification tasks inspired by how effective instructors might engage their students in learning a task. Specifically, we propose presenting exemplar answers in a *comparative format* rather than the traditional single-answer format. We also show that including the test instance before the exemplars can improve performance, making it easier for LLMs to focus on relevant exemplars. Lastly, we include a summarization step before attempting the test, following a common human practice. Experiments on various classification tasks, conducted across both decoder-only LLMs (Llama 2, 3) and encoder-decoder LLMs (Flan-T5-XL, XXL), show that Tutor-ICL consistently boosts performance, achieving up to a 13.76% increase in accuracy.
We present a simple, but effective method to incorporate syntactic dependency information directly into transformer-based language models (e.g. RoBERTa) for tasks such as Aspect-Based Sentiment Classification (ABSC), where the desired output depends on specific input tokens. In contrast to prior approaches to ABSC that capture syntax by combining language models with graph neural networks over dependency trees, our model, Syntax-Integrated RoBERTa for ABSC (SIR-ABSC) incorporates syntax directly into the language model by using a novel aggregator token. Yet, SIR-ABSC outperforms these more complex models, yielding new state-of-the-art results on ABSC.