Hyunseung Lim


2025

pdf bib
A Large-Scale Real-World Evaluation of an LLM-Based Virtual Teaching Assistant
Sunjun Kweon | Sooyohn Nam | Hyunseung Lim | Hwajung Hong | Edward Choi
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track)

Virtual Teaching Assistants (VTAs) powered by Large Language Models (LLMs) have the potential to enhance student learning by providing instant feedback and facilitating multi-turn interactions. However, empirical studies on their effectiveness and acceptance in real-world classrooms are limited, leaving their practical impact uncertain. In this study, we develop an LLM-based VTA and deploy it in an introductory AI programming course with 477 graduate students. To assess how student perceptions of the VTA’s performance evolve over time, we conduct three rounds of comprehensive surveys at different stages of the course. Additionally, we analyze 3,869 student–VTA interaction pairs to identify common question types and engagement patterns. We then compare these interactions with traditional student-human instructor interactions to evaluate the VTA’s role in the learning process. Through a large-scale empirical study and interaction analysis, we assess the feasibility of deploying VTAs in real-world classrooms and identify key challenges for broader adoption. Finally, we release the source code of our VTA system, fostering future advancements in AI-driven education.

pdf bib
Mind the Blind Spots: A Focus-Level Evaluation Framework for LLM Reviews
Hyungyu Shin | Jingyu Tang | Yoonjoo Lee | Nayoung Kim | Hyunseung Lim | Ji Yong Cho | Hwajung Hong | Moontae Lee | Juho Kim
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Peer review underpins scientific progress, but it is increasingly strained by reviewer shortages and growing workloads. Large Language Models (LLMs) can automatically draft reviews now, but determining whether LLM-generated reviews are trustworthy requires systematic evaluation. Researchers have evaluated LLM reviews at either surface-level (e.g., BLEU and ROUGE) or content-level (e.g., specificity and factual accuracy). Yet it remains uncertain whether LLM-generated reviews attend to the same critical facets that human experts weigh—the strengths and weaknesses that ultimately drive an accept-or-reject decision. We introduce a focus-level evaluation framework that operationalizes the focus as a normalized distribution of attention across predefined facets in paper reviews. Based on the framework, we developed an automatic focus-level evaluation pipeline based on two sets of facets: target (e.g., problem, method, and experiment) and aspect (e.g., validity, clarity, and novelty), leveraging 676 paper reviews from OpenReview that consists of 3,657 strengths and weaknesses identified from human experts. The comparison of focus distributions between LLMs and human experts showed that the off-the-shelf LLMs consistently have a more biased focus towards examining technical validity while significantly overlooking novelty assessment when criticizing papers.Dataset: https://figshare.com/s/d5adf26c802527dd0f62

2024

pdf bib
LLM-as-a-tutor in EFL Writing Education: Focusing on Evaluation of Student-LLM Interaction
Jieun Han | Haneul Yoo | Junho Myung | Minsun Kim | Hyunseung Lim | Yoonsu Kim | Tak Yeon Lee | Hwajung Hong | Juho Kim | So-Yeon Ahn | Alice Oh
Proceedings of the 1st Workshop on Customizable NLP: Progress and Challenges in Customizing NLP for a Domain, Application, Group, or Individual (CustomNLP4U)

In the context of English as a Foreign Language (EFL) writing education, LLM-as-a-tutor can assist students by providing real-time feedback on their essays. However, challenges arise in assessing LLM-as-a-tutor due to differing standards between educational and general use cases. To bridge this gap, we integrate pedagogical principles to assess student-LLM interaction. First, we explore how LLMs can function as English tutors, providing effective essay feedback tailored to students. Second, we propose three criteria to evaluate LLM-as-a-tutor specifically designed for EFL writing education, emphasizing pedagogical aspects. In this process, EFL experts evaluate the feedback from LLM-as-a-tutor regarding (1) quality and (2) characteristics. On the other hand, EFL learners assess their (3) learning outcomes from interaction with LLM-as-a-tutor. This approach lays the groundwork for developing LLMs-as-a-tutor tailored to the needs of EFL learners, advancing the effectiveness of writing education in this context.