Hyeonseok Kang


2025

pdf bib
AMACE: Automatic Multi-Agent Chart Evolution for Iteratively Tailored Chart Generation
Hyuk Namgoong | Jeesu Jung | Hyeonseok Kang | Yohan Lee | Sangkeun Jung
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Many statistical facts are conveyed through charts. While various methods have emerged for chart understanding, chart generation typically requires users to manually input code, intent, and other parameters to obtain the desired format on chart generation tools. Recently, the advent of image-generating Large Language Models has facilitated chart generation; however, even this process often requires users to provide numerous constraints for accurate results. In this paper, we propose a loop-based framework for automatically evolving charts in a multi-agent environment. Within this framework, three distinct agents—Chart Code Generator, Chart Replier, and Chart Quality Evaluator—collaborate for iterative, user-tailored chart generation using large language models. Our approach demonstrates an improvement of up to 29.97% in performance compared to first generation, while also reducing generation time by up to 86.9% compared to manual prompt-based methods, showcasing the effectiveness of this multi-agent collaboration in enhancing the quality and efficiency of chart generation.

2024

pdf bib
Guidance-Based Prompt Data Augmentation in Specialized Domains for Named Entity Recognition
Hyeonseok Kang | Hyein Seo | Jeesu Jung | Sangkeun Jung | Du-Seong Chang | Riwoo Chung
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

While the abundance of rich and vast datasets across numerous fields has facilitated the advancement of natural language processing, sectors in need of specialized data types continue to struggle with the challenge of finding quality data. Our study introduces a novel guidance data augmentation technique utilizing abstracted context and sentence structures to produce varied sentences while maintaining context-entity relationships, addressing data scarcity challenges. By fostering a closer relationship between context, sentence structure, and role of entities, our method enhances data augmentation’s effectiveness. Consequently, by showcasing diversification in both entity-related vocabulary and overall sentence structure, and simultaneously improving the training performance of named entity recognition task.