Hwan Chang


2025

pdf bib
Keep Security! Benchmarking Security Policy Preservation in Large Language Model Contexts Against Indirect Attacks in Question Answering
Hwan Chang | Yumin Kim | Yonghyun Jun | Hwanhee Lee
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

As Large Language Models (LLMs) are increasingly deployed in sensitive domains such as enterprise and government, ensuring that they adhere to **user-defined security policies** within context is critical-especially with respect to information non-disclosure. While prior LLM studies have focused on general safety and socially sensitive data, large-scale benchmarks for **contextual security** preservation against attacks remain lacking. To address this, we introduce a novel large-scale benchmark dataset, **CoPriva**, evaluating LLM adherence to contextual non-disclosure policies in question answering. Derived from realistic contexts, our dataset includes explicit policies and queries designed as direct and challenging indirect attacks seeking prohibited information. We evaluate 10 LLMs on our benchmark and reveal a significant vulnerability: many models violate user-defined policies and leak sensitive information. This failure is particularly severe against indirect attacks, highlighting a critical gap in current LLM safety alignment for sensitive applications. Our analysis reveals that while models can often identify the correct answer to a query, they struggle to incorporate policy constraints during generation. In contrast, they exhibit a partial ability to revise outputs when explicitly prompted. Our findings underscore the urgent need for more robust methods to guarantee contextual security.

pdf bib
How Do Large Vision-Language Models See Text in Image? Unveiling the Distinctive Role of OCR Heads
Ingeol Baek | Hwan Chang | Sunghyun Ryu | Hwanhee Lee
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Despite significant advancements in Large Vision Language Models (LVLMs), a gap remains, particularly regarding their interpretability and how they locate and interpret textual information within images. In this paper, we explore various LVLMs to identify the specific heads responsible for recognizing text from images, which we term the Optical Character Recognition Head (OCR Head). Our findings regarding these heads are as follows: (1) Less Sparse: Unlike previous retrieval heads, a large number of heads are activated to extract textual information from images. (2) Qualitatively Distinct: OCR heads possess properties that differ significantly from general retrieval heads, exhibiting low similarity in their characteristics. (3) Statically Activated: The frequency of activation for these heads closely aligns with their OCR scores. We validate our findings in downstream tasks by applying Chain-of-Thought (CoT) to both OCR and conventional retrieval heads and by masking these heads. We also demonstrate that redistributing sink-token values within the OCR heads improves performance. These insights provide a deeper understanding of the internal mechanisms LVLMs employ in processing embedded textual information in images.

pdf bib
Probing-RAG: Self-Probing to Guide Language Models in Selective Document Retrieval
Ingeol Baek | Hwan Chang | ByeongJeong Kim | Jimin Lee | Hwanhee Lee
Findings of the Association for Computational Linguistics: NAACL 2025

Retrieval-Augmented Generation (RAG) enhances language models by retrieving and incorporating relevant external knowledge. However, traditional retrieve-and-generate processes may not be optimized for real-world scenarios, where queries might require multiple retrieval steps or none at all. In this paper, we propose a Probing-RAG, which utilizes the hidden state representations from the intermediate layers of language models to adaptively determine the necessity of additional retrievals for a given query. By employing a pre-trained prober, Probing-RAG effectively captures the model’s internal cognition, enabling reliable decision-making about retrieving external documents. Experimental results across five open-domain QA datasets demonstrate that Probing-RAG outperforms previous methods while reducing the number of redundant retrieval steps.

pdf bib
Which Retain Set Matters for LLM Unlearning? A Case Study on Entity Unlearning
Hwan Chang | Hwanhee Lee
Findings of the Association for Computational Linguistics: ACL 2025

Large language models (LLMs) risk retaining unauthorized or sensitive information from their training data, which raises privacy concerns. LLM unlearning seeks to mitigate these risks by selectively removing specified data while maintaining overall model performance. However, most existing work focuses on methods to achieve effective forgetting and does not provide a detailed analysis of the retain set, the portion of training data that is not targeted for removal. In this paper, we investigate the effects of unlearning on various subsets of the retain set through a case study on entity unlearning. We introduce the Syntactically Similar Neighbor Set, a group of queries that share similar syntactic structures with the data targeted for removal, and show that this subset suffers the greatest performance drop during unlearning. Moreover, when used for regularization, this set not only preserves performance on syntactically similar queries but also delivers comparable or improved results across other data subsets. Our results highlight that syntactic similarity is a critical factor, potentially more so than domain or entity relationships, in achieving effective and practical LLM unlearning.