Huihao Jing


2025

pdf bib
PrivaCI-Bench: Evaluating Privacy with Contextual Integrity and Legal Compliance
Haoran Li | Wenbin Hu | Huihao Jing | Yulin Chen | Qi Hu | Sirui Han | Tianshu Chu | Peizhao Hu | Yangqiu Song
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent advancements in generative large language models (LLMs) have enabled wider applicability, accessibility, and flexibility. However, their reliability and trustworthiness are still in doubt, especially for concerns regarding individuals’ data privacy. Great efforts have been made on privacy by building various evaluation benchmarks to study LLMs’ privacy awareness and robustness from their generated outputs to their hidden representations. Unfortunately, most of these works adopt a narrow formulation of privacy and only investigate personally identifiable information (PII). In this paper, we follow the merit of the Contextual Integrity (CI) theory, which posits that privacy evaluation should not only cover the transmitted attributes but also encompass the whole relevant social context through private information flows. We present PrivaCI-Bench, a comprehensive contextual privacy evaluation benchmark targeted at legal compliance to cover well-annotated privacy and safety regulations, real court cases, privacy policies, and synthetic data built from the official toolkit to study LLMs’ privacy and safety compliance. We evaluate the latest LLMs, including the recent reasoner models QwQ-32B and Deepseek R1. Our experimental results suggest that though LLMs can effectively capture key CI parameters inside a given context, they still require further advancements for privacy compliance.

pdf bib
Context Reasoner: Incentivizing Reasoning Capability for Contextualized Privacy and Safety Compliance via Reinforcement Learning
Wenbin Hu | Haoran Li | Huihao Jing | Qi Hu | Ziqian Zeng | Sirui Han | Xu Heli | Tianshu Chu | Peizhao Hu | Yangqiu Song
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

While Large Language Models (LLMs) exhibit remarkable capabilities, they also introduce significant safety and privacy risks. Current mitigation strategies often fail to preserve contextual reasoning capabilities in risky scenarios. Instead, they rely heavily on sensitive pattern matching to protect LLMs, which limits the scope. Furthermore, they overlook established safety and privacy standards, leading to systemic risks for legal compliance. To address these gaps, we formulate safety and privacy issues into contextualized compliance problems following the Contextual Integrity (CI) theory. Under the CI framework, we align our model with three critical regulatory standards: GDPR, EU AI Act, and HIPAA. Specifically, we employ reinforcement learning (RL) with a rule-based reward to incentivize contextual reasoning capabilities while enhancing compliance with safety and privacy norms. Through extensive experiments, we demonstrate that our method not only significantly enhances legal compliance (achieving a +8.58% accuracy improvement in safety/privacy benchmarks) but also further improves general reasoning capability. For OpenThinker-7B, a strong reasoning model that significantly outperforms its base model Qwen2.5-7B-Instruct across diverse subjects, our method enhances its general reasoning capabilities, with +2.05% and +8.98% accuracy improvement on the MMLU and LegalBench benchmark, respectively.

pdf bib
MCIP: Protecting MCP Safety via Model Contextual Integrity Protocol
Huihao Jing | Haoran Li | Wenbin Hu | Qi Hu | Xu Heli | Tianshu Chu | Peizhao Hu | Yangqiu Song
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

As Model Context Protocol (MCP) introduces an easy-to-use ecosystem for users and developers, it also brings underexplored safety risks. Its decentralized architecture, which separates clients and servers, poses unique challenges for systematic safety analysis. This paper proposes a novel framework to enhance MCP safety. Guided by the MAESTRO framework, we first analyze the missing safety mechanisms in MCP, and based on this analysis, we propose the Model Contextual Integrity Protocol (MCIP), a refined version of MCP that addresses these gaps. Next, we develop a fine-grained taxonomy that captures a diverse range of unsafe behaviors observed in MCP scenarios. Building on this taxonomy, we develop benchmark and training data that support the evaluation and improvement of LLMs’ capabilities in identifying safety risks within MCP interactions. Leveraging the proposed benchmark and training data, we conduct extensive experiments on state-of-the-art LLMs. The results highlight LLMs’ vulnerabilities in MCP interactions and demonstrate that our approach substantially improves their safety performance.

2024

pdf bib
MIND: Multimodal Shopping Intention Distillation from Large Vision-language Models for E-commerce Purchase Understanding
Baixuan Xu | Weiqi Wang | Haochen Shi | Wenxuan Ding | Huihao Jing | Tianqing Fang | Jiaxin Bai | Xin Liu | Changlong Yu | Zheng Li | Chen Luo | Qingyu Yin | Bing Yin | Long Chen | Yangqiu Song
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Improving user experience and providing personalized search results in E-commerce platforms heavily rely on understanding purchase intention. However, existing methods for acquiring large-scale intentions bank on distilling large language models with human annotation for verification. Such an approach tends to generate product-centric intentions, overlook valuable visual information from product images, and incurs high costs for scalability. To address these issues, we introduce MIND, a multimodal framework that allows Large Vision-Language Models (LVLMs) to infer purchase intentions from multimodal product metadata and prioritize human-centric ones. Using Amazon Review data, we apply MIND and create a multimodal intention knowledge base, which contains 1,264,441 intentions derived from 126,142 co-buy shopping records across 107,215 products. Extensive human evaluations demonstrate the high plausibility and typicality of our obtained intentions and validate the effectiveness of our distillation framework and filtering mechanism. Further experiments reveal the positive downstream benefits that MIND brings to intention comprehension tasks and highlight the importance of multimodal generation and role-aware filtering. Additionally, MIND shows robustness to different prompts and superior generation quality compared to previous methods.