Large Language Models (LLMs) require alignment via reinforcement learning (RL) to effectively perform task-specific objectives, such as human preference alignment and enhanced reasoning. While Proximal Policy Optimization (PPO) is widely adopted, its computational overhead, stemming from additional value model requirements, limits applicability. Existing alternatives, like Group Relative Policy Optimization (GRPO), mitigate computational costs but remain sensitive to reward model quality. To address this, we introduce Group Preference Reward Shaping (GPRS), a novel method that leverages preference-based comparisons rather than precise numerical rewards. GPRS requires no extra model components and remains robust across varying reward model sizes and qualities. Extensive experiments demonstrate that GPRS consistently outperforms existing critic-model-free RL algorithms in Reinforcement Learning from Human Feedback (RLHF) and reasoning tasks, providing stable and good alignment performance.
Large Language Models (LLMs) have achieved unprecedented performance in Natural Language Generation (NLG) tasks. However, many existing studies have shown that they could be misused to generate undesired content. In response, before releasing LLMs for public access, model developers usually align those language models through Supervised Fine-Tuning (SFT) or Reinforcement Learning with Human Feedback (RLHF). Consequently, those aligned large language models refuse to generate undesired content when facing potentially harmful/unethical requests. A natural question is “could alignment really prevent those open-sourced large language models from being misused to generate undesired content?”. In this work, we provide a negative answer to this question. In particular, we show those open-sourced, aligned large language models could be easily misguided to generate undesired content without heavy computations or careful prompt designs. Our key idea is to directly manipulate the generation process of open-sourced LLMs to misguide it to generate undesired content including harmful or biased information and even private data. We evaluate our method on 4 open-sourced LLMs accessible publicly and our finding highlights the need for more advanced mitigation strategies for open-sourced LLMs.
This paper introduces a novel generalized self-imitation learning GSIL framework, which effectively and efficiently aligns large language models with offline demonstration data. We develop GSIL by deriving a surrogate objective of imitation learning with density ratio estimates, facilitating the use of self-generated data and optimizing the imitation learning objective with simple classification losses. GSIL eliminates the need for complex adversarial training in standard imitation learning, achieving lightweight and efficient fine-tuning for large language models. In addition, GSIL encompasses a family of offline losses parameterized by a general class of convex functions for density ratio estimation and enables a unified view for alignment with demonstration data. Extensive experiments show that GSIL consistently and significantly outperforms baselines in many challenging benchmarks, such as coding (HuamnEval), mathematical reasoning (GSM8K) and instruction-following benchmark (MT-Bench). Code is public available at https://github.com/tengxiao1/GSIL.