Honghao Fu


2025

pdf bib
VistaWise: Building Cost-Effective Agent with Cross-Modal Knowledge Graph for Minecraft
Honghao Fu | Junlong Ren | Qi Chai | Deheng Ye | Yujun Cai | Hao Wang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Large language models (LLMs) have shown significant promise in embodied decision-making tasks within virtual open-world environments. Nonetheless, their performance is hindered by the absence of domain-specific knowledge. Methods that finetune on large-scale domain-specific data entail prohibitive development costs. This paper introduces VistaWise, a cost-effective agent framework that integrates cross-modal domain knowledge and finetunes a dedicated object detection model for visual analysis. It reduces the requirement for domain-specific training data from millions of samples to a few hundred. VistaWise integrates visual information and textual dependencies into a cross-modal knowledge graph (KG), enabling a comprehensive and accurate understanding of multimodal environments. We also equip the agent with a retrieval-based pooling strategy to extract task-related information from the KG, and a desktop-level skill library to support direct operation of the Minecraft desktop client via mouse and keyboard inputs. Experimental results demonstrate that VistaWise achieves state-of-the-art performance across various open-world tasks, highlighting its effectiveness in reducing development costs while enhancing agent performance.

2024

pdf bib
Signer Diversity-driven Data Augmentation for Signer-Independent Sign Language Translation
Honghao Fu | Liang Zhang | Biao Fu | Rui Zhao | Jinsong Su | Xiaodong Shi | Yidong Chen
Findings of the Association for Computational Linguistics: NAACL 2024

The primary objective of sign language translation (SLT) is to transform sign language videos into natural sentences.A crucial challenge in this field is developing signer-independent SLT systems which requires models to generalize effectively to signers not encountered during training.This challenge is exacerbated by the limited diversity of signers in existing SLT datasets, which often results in suboptimal generalization capabilities of current models.Achieving robustness to unseen signers is essential for signer-independent SLT.However, most existing method relies on signer identity labels, which is often impractical and costly in real-world applications.To address this issue, we propose the Signer Diversity-driven Data Augmentation (SDDA) method that can achieve good generalization without relying on signer identity labels. SDDA comprises two data augmentation schemes. The first is data augmentation based on adversarial training, which aims to utilize the gradients of the model to generate adversarial examples. The second is data augmentation based on diffusion model, which focuses on using the advanced diffusion-based text guided image editing method to modify the appearances of the signer in images. The combination of the two strategies significantly enriches the diversity of signers in the training process.Moreover, we introduce a consistency loss and a discrimination loss to enhance the learning of signer-independent features.Our experimental results demonstrate our model significantly enhances the performance of SLT in the signer-independent setting, achieving state-of-the-art results without relying on signer identity labels.