Harmanpreet Singh


2025

pdf bib
GEMMAS: Graph-based Evaluation Metrics for Multi Agent Systems
Jisoo Lee | Raeyoung Chang | Dongwook Kwon | Harmanpreet Singh | Nikhil Verma
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track

Multi-agent systems built on language models have shown strong performance on collaborative reasoning tasks. However, existing evaluations focus only on the correctness of the final output, overlooking how inefficient communication and poor coordination contribute to redundant reasoning and higher computational costs. We introduce **GEMMAS**, a graph-based evaluation framework that analyzes the internal collaboration process by modeling agent interactions as a directed acyclic graph. To capture collaboration quality, we propose two process-level metrics: Information Diversity Score (IDS) to measure semantic variation in inter-agent messages, and Unnecessary Path Ratio (UPR) to quantify redundant reasoning paths. We evaluate GEMMAS across five benchmarks and highlight results on GSM8K, where systems with only a 2.1% difference in accuracy differ by 12.8% in IDS and 80% in UPR, revealing substantial variation in internal collaboration. These findings demonstrate that outcome-only metrics are insufficient for evaluating multi-agent performance and highlight the importance of process-level diagnostics in designing more interpretable and resource-efficient collaborative AI systems.

2024

pdf bib
Personal Large Language Model Agents: A Case Study on Tailored Travel Planning
Harmanpreet Singh | Nikhil Verma | Yixiao Wang | Manasa Bharadwaj | Homa Fashandi | Kevin Ferreira | Chul Lee
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track

Large Language Models (LLMs) have made significant progress, becoming more autonomous and capable of handling real-world tasks through their access to tools, various planning strategies, and memory, referred to as LLM agents. One emerging area of focus is customizing these models to cater to individual user preferences, thereby shaping them into personal LLM agents. This work investigates how the user model, which encapsulates user-related information, preferences, and personal concepts, influences an LLM agent’s planning and reasoning capabilities. We introduce a personalized version of TravelPlanner, called TravelPlanner+, and establish baselines for personal LLM agents. Our evaluation strategy contains an LLM-as-a-Judge component, which provides further in-depth insights into the decision-making process of a personal LLM agent by comparing generic and personal plans. Our findings reveal that while generic plans perform robustly, personal plans show marked improvement in relevance and suitability, with preference rates up to 74.4% on validation and 87.3% on the test set. These results highlight the potential of personal LLM agents to significantly enhance user satisfaction.