Hanlei Zhang


2025

pdf bib
LLM-Guided Semantic Relational Reasoning for Multimodal Intent Recognition
Qianrui Zhou | Hua Xu | Yifan Wang | Xinzhi Dong | Hanlei Zhang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Understanding human intents from multimodal signals is critical for analyzing human behaviors and enhancing human-machine interactions in real-world scenarios. However, existing methods exhibit limitations in their modality-level reliance, constraining relational reasoning over fine-grained semantics for complex intent understanding. This paper proposes a novel LLM-Guided Semantic Relational Reasoning (LGSRR) method, which harnesses the expansive knowledge of large language models (LLMs) to establish semantic foundations that boost smaller models’ relational reasoning performance. Specifically, an LLM-based strategy is proposed to extract fine-grained semantics as guidance for subsequent reasoning, driven by a shallow-to-deep Chain-of-Thought (CoT) that autonomously uncovers, describes, and ranks semantic cues by their importance without relying on manually defined priors. Besides, we formally model three fundamental types of semantic relations grounded in logical principles and analyze their nuanced interplay to enable more effective relational reasoning. Extensive experiments on multimodal intent and dialogue act recognition tasks demonstrate LGSRR’s superiority over state-of-the-art methods, with consistent performance gains across diverse semantic understanding scenarios. The complete data and code are available at https://github.com/thuiar/LGSRR.

2024

pdf bib
Unsupervised Multimodal Clustering for Semantics Discovery in Multimodal Utterances
Hanlei Zhang | Hua Xu | Fei Long | Xin Wang | Kai Gao
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Discovering the semantics of multimodal utterances is essential for understanding human language and enhancing human-machine interactions. Existing methods manifest limitations in leveraging nonverbal information for discerning complex semantics in unsupervised scenarios. This paper introduces a novel unsupervised multimodal clustering method (UMC), making a pioneering contribution to this field. UMC introduces a unique approach to constructing augmentation views for multimodal data, which are then used to perform pre-training to establish well-initialized representations for subsequent clustering. An innovative strategy is proposed to dynamically select high-quality samples as guidance for representation learning, gauged by the density of each sample’s nearest neighbors. Besides, it is equipped to automatically determine the optimal value for the top-K parameter in each cluster to refine sample selection. Finally, both high- and low-quality samples are used to learn representations conducive to effective clustering. We build baselines on benchmark multimodal intent and dialogue act datasets. UMC shows remarkable improvements of 2-6% scores in clustering metrics over state-of-the-art methods, marking the first successful endeavor in this domain. The complete code and data are available at https://github.com/thuiar/UMC.

2021

pdf bib
TEXTOIR: An Integrated and Visualized Platform for Text Open Intent Recognition
Hanlei Zhang | Xiaoteng Li | Hua Xu | Panpan Zhang | Kang Zhao | Kai Gao
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System Demonstrations

TEXTOIR is the first integrated and visualized platform for text open intent recognition. It is composed of two main modules: open intent detection and open intent discovery. Each module integrates most of the state-of-the-art algorithms and benchmark intent datasets. It also contains an overall framework connecting the two modules in a pipeline scheme. In addition, this platform has visualized tools for data and model management, training, evaluation and analysis of the performance from different aspects. TEXTOIR provides useful toolkits and convenient visualized interfaces for each sub-module, and designs a framework to implement a complete process to both identify known intents and discover open intents.