Hang Song


2025

pdf bib
Advancing Fine-Grained Visual Understanding with Multi-Scale Alignment in Multi-Modal Models
Wei Wang | Zhaowei Li | Qi Xu | Linfeng Li | YiQing Cai | Botian Jiang | Hang Song | Xingcan Hu | Pengyu Wang | Li Xiao
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Multi-modal large language models (MLLMs) have achieved remarkable success in fine-grained visual understanding across a range of tasks. However, they often encounter significant challenges due to inadequate alignment for fine-grained knowledge, which restricts their ability to accurately capture local details and attain a comprehensive global perception. While recent advancements have focused on aligning object expressions with grounding information, they typically lack explicit integration of object images, which contain affluent information beyond mere texts or coordinates. To bridge this gap, we introduce a novel fine-grained visual knowledge alignment method that effectively aligns and integrates multi-scale knowledge of objects, including texts, coordinates, and images. This innovative method is underpinned by our multi-scale fine-grained enhancement data synthesis pipeline, which provides over 300K essential training data to enhance alignment and improve overall performance. Furthermore, we present TinyGroundingGPT, a series of compact models optimized for high-level alignments. With a scale of approximately 3B parameters, TinyGroundingGPT achieves outstanding results in grounding tasks while delivering performance comparable to larger MLLMs in complex visual scenarios.

pdf bib
QCRD: Quality-guided Contrastive Rationale Distillation for Large Language Models
Wei Wang | Zhaowei Li | Qi Xu | YiQing Cai | Hang Song | Qi Qi | Ran Zhou | Zhida Huang | Tao Wang | Li Xiao
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

The deployment of large language models (LLMs) faces considerable challenges concerning resource constraints and inference efficiency. Recent research has increasingly focused on smaller, task-specific models enhanced by distilling knowledge from LLMs. However, prior studies have often overlooked the diversity and quality of knowledge, especially the untapped potential of negative knowledge. Constructing effective negative knowledge remains severely understudied. In this paper, we introduce a novel framework called quality-guided contrastive rationale distillation aimed at enhancing reasoning capabilities through contrastive knowledge learning. For positive knowledge, we enrich its diversity through temperature sampling and employ self-consistency for further denoising and refinement. For negative knowledge, we propose an innovative self-adversarial approach that generates low-quality rationales by sampling previous iterations of smaller language models, embracing the idea that one can learn from one’s own weaknesses. A contrastive loss is developed to distill both positive and negative knowledge into smaller language models, where an online-updating discriminator is integrated to assess qualities of rationales and assign them appropriate weights, optimizing the training process. Through extensive experiments across multiple reasoning tasks, we demonstrate that our method consistently outperforms existing distillation techniques, yielding higher-quality rationales.

pdf bib
UnifiedMLLM: Enabling Unified Representation for Multi-modal Multi-tasks With Large Language Model
Zhaowei Li | Wei Wang | YiQing Cai | Qi Xu | Pengyu Wang | Dong Zhang | Hang Song | Botian Jiang | Zhida Huang | Tao Wang
Findings of the Association for Computational Linguistics: NAACL 2025

Significant advancements has recently been achieved in the field of multi-modal large language models (MLLMs), demonstrating their remarkable capabilities in understanding and reasoning across diverse tasks. However, these models are often trained for specific tasks and rely on task-specific input-output formats, limiting their applicability to a broader range of tasks. This raises a fundamental question: Can we develop a unified approach to represent and handle different multi-modal tasks to maximize the generalizability of MLLMs? In this paper, we propose UnifiedMLLM, a comprehensive model designed to represent various tasks using a unified representation. Our model exhibits strong capabilities in comprehending the implicit intent of user instructions and preforming reasoning. In addition to generating textual responses, our model also outputs task tokens and grounding tokens, serving as indicators of task types and task granularity. These outputs are subsequently routed through the task router and directed to specific expert models for task completion. To train our model, we construct a task-specific dataset and an 100k multi-task dataset encompassing complex scenarios. Employing a three-stage training strategy, we equip our model with robust reasoning and task processing capabilities while preserving its generalization capacity and knowledge reservoir. Extensive experiments showcase the impressive performance of our unified representation approach across various tasks, surpassing existing methodologies. Furthermore, our approach exhibits exceptional scalability and generality.

2024

pdf bib
GroundingGPT: Language Enhanced Multi-modal Grounding Model
Zhaowei Li | Qi Xu | Dong Zhang | Hang Song | YiQing Cai | Qi Qi | Ran Zhou | Junting Pan | Zefeng Li | Vu Tu | Zhida Huang | Tao Wang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multi-modal large language models (MLLMs) have demonstrated remarkable performance across various tasks. However, these models often prioritize capturing global information and overlook the importance of perceiving local information. This limitation hinders their ability to effectively understand fine-grained details and handle grounding tasks that necessitate nuanced comprehension. Although some recent works have made strides in this, they have primarily focused on single-modality inputs. Therefore, we propose GroundingGPT, an end-to-end language enhanced multi-modal grounding model. It is designed to perform fine-grained grounding tasks for three modalities: image, video and audio. To enhance the model’s performance, we adopt a coarse-to-fine training strategy, utilizing a three-stage training approach to progressively enhance the model’s semantic awareness and fine-grained understanding capabilities. Additionally, we employ a diversified stage-specific dataset construction pipeline, developing a multi-modal, multi-granularity dataset tailored for training the model in different stages. Extensive experiments conducted on multiple multi-modal benchmarks demonstrate that our model achieves impressive fine-grained understanding of multi-modal inputs on grounding tasks while maintaining or improving its global comprehension capabilities. Our code, model, and dataset are available at https://github.com/lzw-lzw/GroundingGPT.