Hanbo Zhang
2025
ProcWorld: Benchmarking Large Model Planning in Reachability-Constrained Environments
Dong Wang
|
Xinghang Li
|
Zhengshen Zhang
|
Jirong Liu
|
Xiao Ma
|
Hanbo Zhang
|
Tao Kong
|
Huaping Liu
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
We introduce ProcWorld, a large-scale benchmark for partially observable embodied spatial reasoning and long-term planning with large language models (LLM) and vision language models (VLM). ProcWorld features a wide range of challenging embodied navigation and object manipulation tasks, covering 16 task types, 5,000 rooms, and over 10 million evaluation trajectories with diverse data distribution. ProcWorld supports configurable observation modes, ranging from text-only descriptions to vision-only observations. It enables text-based actions to control the agent following language instructions. ProcWorld has presented significant challenges for LLMs and VLMs: (1) active information gathering given partial observations for disambiguation; (2) simultaneous localization and decision-making by tracking the spatio-temporal state-action distribution; (3) constrained reasoning with dynamic states subject to physical reachability. Our extensive evaluation of 15 foundation models and 5 reasoning algorithms (with over 1 million rollouts) indicates larger models perform better. However, ProcWorld remains highly challenging for existing state-of-the-art models and in-context learning methods due to constrained reachability and the need for combinatorial spatial reasoning.
2024
What Matters in Training a GPT4-Style Language Model with Multimodal Inputs?
Yan Zeng
|
Hanbo Zhang
|
Jiani Zheng
|
Jiangnan Xia
|
Guoqiang Wei
|
Yang Wei
|
Yuchen Zhang
|
Tao Kong
|
Ruihua Song
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Recent advancements in GPT-4V have displayed remarkable multi-modal capabilities in processing image inputs and following open-ended instructions. Despite these advancements, there is considerable scope for enhancing open-source multi-modal LLMs, especially in terms of multi-modal understanding accuracy and instruction-following proficiency. In this paper, we conduct a comprehensive study on training GPT4-style models. We introduce Lynx a multi-modal LLM developed through a series of controlled experiments comparing various model variants. This process allowed us to identify and implement an optimal training strategy tailored for multi-modal LLMs. In addition to our model development, we propose a plug-and-play technique designed to augment the instruction-following capabilities of multi-modal LLMs. We have validated the performance of Lynx on multiple benchmarks. Results demonstrate that Lynx not only achieves strong image understanding accuracy but also excels in instruction-following tasks, paving the path for ongoing enhancements in multi-modal LLMs.