Language typology databases enhance multi-lingual Natural Language Processing (NLP) by improving model adaptability to diverse linguistic structures. The widely-used lang2vec toolkit integrates several such databases, but its coverage remains limited at 28.9%. Previous work on automatically increasing coverage predicts missing values based on features from other languages or focuses on single features, we propose to use textual data for better-informed feature prediction. To this end, we introduce a multi-lingual Part-of-Speech (POS) tagger, achieving over 70% accuracy across 1,749 languages, and experiment with external statistical features and a variety of machine learning algorithms. We also introduce a more realistic evaluation setup, focusing on likely to be missing typology features, and show that our approach outperforms previous work in both setups.
Transformers often struggle to generalize to longer sequences than those seen during training - a limitation known as length extrapolation. Most existing Relative Positional Encoding (RPE) methods attempt to address this by introducing either fixed linear biases or globally learned biases, which lack the capacity to adapt to different input contexts. In this work, we propose an additive RPE, Context-Aware Biases for Length Extrapolation (CABLE), a method that learns token-specific, context-aware biases for each attention head in transformers. By dynamically adjusting positional biases based on the input sequence, CABLE overcomes the rigidity of fixed RPEs. When evaluated on sequences longer than originally trained with, GPT-2 Medium (334M parameters) with CABLE achieves lower perplexity than counterparts using other widely adopted positional encoding methods. Additionally, by applying CABLE to the BERT base model we improved performance in long-context retrieval tasks. Our method significantly enhances the extrapolation performance of existing RPE methods tested on the FineWeb-Edu-10B and WikiText-103 datasets. Our code is available at: https://github.com/AlgonetLabs/Cable.
Transformer-based language models have shown an excellent ability to effectively capture and utilize contextual information. Although various analysis techniques have been used to quantify and trace the contribution of single contextual cues to a target task such as subject-verb agreement or coreference resolution, scenarios in which multiple relevant cues are available in the context remain underexplored.In this paper, we investigate how language models handle gender agreement when multiple gender cue words are present, each capable of independently disambiguating a target gender pronoun. We analyze two widely used Transformer-based models: BERT, an encoder-based, and GPT-2, a decoder-based model.Our analysis employs two complementary approaches: context mixing analysis, which tracks information flow within the model, and a variant of activation patching, which measures the impact of cues on the model’s prediction. We find that BERT tends to prioritize the first cue in the context to form both the target word representations and the model’s prediction, while GPT-2 relies more on the final cue. Our findings reveal striking differences in how encoder-based and decoder-based models prioritize and use contextual information for their predictions.
The advancement of large language models (LLMs), their ability to produce eloquent and fluent content, and their vast knowledge have resulted in their usage in various tasks and applications. Despite generating fluent content, this content can contain fabricated or false information. This problem is known as hallucination and has reduced the confidence in the output of LLMs. In this work, we have used Natural Language Inference to train classifiers for hallucination detection to tackle SemEval-2024 Task 6-SHROOM (Mickus et al., 2024) which is defined in three sub-tasks: Paraphrase Generation, Machine Translation, and Definition Modeling. We have also conducted experiments on LLMs to evaluate their ability to detect hallucinated outputs. We have achieved 75.93% and 78.33% accuracy for the modelaware and model-agnostic tracks, respectively. The shared links of our models and the codes are available on GitHub.