Haipang Wu
2025
CARFT: Boosting LLM Reasoning via Contrastive Learning with Annotated Chain-of-Thought-based Reinforced Fine-Tuning
Wenqiao Zhu
|
Ji Liu
|
Rongjunchen Zhang
|
Haipang Wu
|
Yulun Zhang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Reasoning capability plays a significantly critical role in the the broad applications of Large Language Models (LLMs). To enhance the reasoning performance of LLMs, diverse Reinforcement Learning (RL)-based fine-tuning approaches have been proposed to address the limited generalization capability of LLMs trained solely via Supervised Fine-Tuning (SFT). Despite their effectiveness, two major limitations hinder the advancement of LLMs. First, vanilla RL-based approaches ignore annotated Chain-of-Thought (CoT) and incorporate unstable reasoning path sampling, which typically results in model collapse, unstable training process, and suboptimal performance. Second, existing SFT approaches generally overemphasize the annotated CoT, potentially leading to performance degradation due to insufficient exploitation of potential CoT. In this paper, we propose a Contrastive learning with annotated CoT-based Reinforced Fine-Tuning approach, i.e., CARFT, to enhance the reasoning performance of LLMs while addressing the aforementioned limitations. Specifically, we propose learning a representation for each CoT. Based on this representation, we design novel contrastive signals to guide the fine-tuning process. Our approach not only fully exploits the available annotated CoT but also stabilizes the fine-tuning procedure by incorporating an additional unsupervised learning signal. We conduct comprehensive experiments and in-depth analysis with three baseline approaches, two foundation models, and two datasets to demonstrate significant advantages of CARFT in terms of robustness, performance (up to 10.15%), and efficiency (up to 30.62%).
2023
CDD: A Large Scale Dataset for Legal Intelligence Research
Changzhen Ji
|
Yating Zhang
|
Adam Jatowt
|
Haipang Wu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track
As an important application of Artificial Intelligence, legal intelligence has recently attracted the attention of many researchers. Previous works investigated diverse issues like predicting crimes, predicting outcomes of judicial debates, or extracting information/knowledge from various kinds of legal documents. Although many advances have been made, the research on supporting prediction of court judgments remains relatively scarce, while the lack of large-scale data resources limits the development of this research.In this paper, we present a novel, large-size Court Debate Dataset (CDD), which includes 30,481 court cases, totaling 1,144,425 utterances. CDD contains real-world conversations involving judges, plaintiffs and defendants in court trials. To construct this dataset we have invited experienced judges to design appropriate labels for data records. We then asked law school students to provide annotations based on the defined labels. The dataset can be applied to several downstream tasks, such as text summarization, dialogue generation, text classification, etc. We introduce the details of the different tasks in the rapidly developing field of legal intelligence, the research of which can be fostered thanks to our dataset, and we provide the corresponding benchmark performance.
2021
Dialogue State Tracking with Multi-Level Fusion of Predicted Dialogue States and Conversations
Jingyao Zhou
|
Haipang Wu
|
Zehao Lin
|
Guodun Li
|
Yin Zhang
Proceedings of the 22nd Annual Meeting of the Special Interest Group on Discourse and Dialogue
Most recently proposed approaches in dialogue state tracking (DST) leverage the context and the last dialogue states to track current dialogue states, which are often slot-value pairs. Although the context contains the complete dialogue information, the information is usually indirect and even requires reasoning to obtain. The information in the lastly predicted dialogue states is direct, but when there is a prediction error, the dialogue information from this source will be incomplete or erroneous. In this paper, we propose the Dialogue State Tracking with Multi-Level Fusion of Predicted Dialogue States and Conversations network (FPDSC). This model extracts information of each dialogue turn by modeling interactions among each turn utterance, the corresponding last dialogue states, and dialogue slots. Then the representation of each dialogue turn is aggregated by a hierarchical structure to form the passage information, which is utilized in the current turn of DST. Experimental results validate the effectiveness of the fusion network with 55.03% and 59.07% joint accuracy on MultiWOZ 2.0 and MultiWOZ 2.1 datasets, which reaches the state-of-the-art performance. Furthermore, we conduct the deleted-value and related-slot experiments on MultiWOZ 2.1 to evaluate our model.