Haiming Qin


2025

pdf bib
R-CHAR: A Metacognition-Driven Framework for Role-Playing in Large Language Models
Haiming Qin | Jiwei Zhang | Wei Zhang | KeZhong Lu | Mingyang Zhou | Hao Liao | Rui Mao
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Role-playing capabilities in large language models (LLMs) often lack cognitive consistency in complex scenarios that require deep understanding and coherent reasoning. While recent reasoning models excel in math and coding tasks, they show limited effectiveness in open-ended role-playing scenarios. We introduce R-CHAR (Role-Consistent Hierarchical Adaptive Reasoning), a metacognition-driven framework that enhances role-playing performance through guided thinking trajectories synthesis and adaptive evaluation. Our approach demonstrates that concise thinking processes can achieve superior performance efficiently compared to elaborate reasoning chains in role-playing social intelligence tasks, outperforming existing specialized models. Experimental results on the SocialBench benchmark show significant and stable performance improvements across varying scenario complexities, showing particular strength in long-context comprehension (from 34.64% to 68.59%) and group-level social interactions. Our work advances the development of cognitively consistent role-playing systems, bridging the gap between surface-level mimicry and authentic character simulation.