Hadi Khaled Hamoud


2025

pdf bib
ImageEval 2025: The First Arabic Image Captioning Shared Task
Ahlam Bashiti | Alaa Aljabari | Hadi Khaled Hamoud | Md. Rafiul Biswas | Bilal Mohammed Shalash | Mustafa Jarrar | Fadi Zaraket | George Mikros | Ehsaneddin Asgari | Wajdi Zaghouani
Proceedings of The Third Arabic Natural Language Processing Conference: Shared Tasks

We present ImageEval 2025, the first shared task dedicated to Arabic image captioning. The task addresses the critical gap in multimodal Arabic NLP by focusing on two complementary subtasks: (1) creating the first open-source, manually-captioned Arabic image dataset through a collaborative datathon, and (2) developing and evaluating Arabic image captioning models. A total of 44 teams registered, of which eight submitted during the test phase, producing 111 valid submissions. Evaluation was conducted using automatic metrics, LLM-based judgment, and human assessment. In Subtask 1, the best-performing system achieved a cosine similarity of 65.5, while in Subtask 2, the top score was 60.0. Although these results show encouraging progress, they also confirm that Arabic image captioning remains a challenging task, particularly due to cultural grounding requirements, morphological richness, and dialectal variation. All datasets, baseline models, and evaluation tools are released publicly to support future research in Arabic multimodal NLP.