Guoqiang Ma


2025

pdf bib
FedMKT: Federated Mutual Knowledge Transfer for Large and Small Language Models
Tao Fan | Guoqiang Ma | Yan Kang | Hanlin Gu | Yuanfeng Song | Lixin Fan | Kai Chen | Qiang Yang
Proceedings of the 31st International Conference on Computational Linguistics

Recent research in federated large language models (LLMs) has primarily focused on enabling clients to fine-tune their locally deployed homogeneous LLMs collaboratively or on transferring knowledge from server-based LLMs to small language models (SLMs) at downstream clients. However, a significant gap remains in the simultaneous mutual enhancement of both the server’s LLM and clients’ SLMs. To bridge this gap, we propose FedMKT, a parameter-efficient federated mutual knowledge transfer framework for large and small language models. This framework is designed to adaptively transfer knowledge from the server’s LLM to clients’ SLMs while concurrently enhancing the LLM with clients’ unique domain insights. We facilitate token alignment using minimum edit distance (MinED) and then selective mutual knowledge transfer between client-side SLMs and a server-side LLM, aiming to collectively enhance their performance. Through extensive experiments across three distinct scenarios, we evaluate the effectiveness of FedMKT by utilizing diverse public LLMs and SLMs on a variety of NLP text generation tasks. Empirical results demonstrate that FedMKT simultaneously boosts the performance of both LLMs and SLMs. Our code has been contributed to the FATE open-source project and is now publicly accessible at https://github.com/FederatedAI/FATE-LLM/tree/main/python/fate_llm/algo/fedmkt

pdf bib
PPC-GPT: Federated Task-Specific Compression of Large Language Models via Pruning and Chain-of-Thought Distillation
Tao Fan | Guoqiang Ma | Yuanfeng Song | Lixin Fan | Qiang Yang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Compressing Large Language Models (LLMs) into task-specific Small Language Models (SLMs) encounters two significant challenges: safeguarding domain-specific knowledge privacy and managing limited resources. To tackle these challenges, we propose PPC-GPT, a novel unified framework that systematically addresses both privacy preservation and model compression in federated settings. PPC-GPT works on a server-client federated architecture, where the client sends differentially private (DP) perturbed task-specific data to the server’s LLM. The LLM then generates synthetic data along with their corresponding rationales. This synthetic data is subsequently used for both LLM pruning and retraining processes. Our framework’s key innovation lies in its holistic integration of privacy-preserving mechanisms, synthetic data generation, and task-specific compression techniques, creating unique benefits through component interaction. Our experiments across diverse text generation tasks demonstrate that PPC-GPT successfully achieves dual objectives: maintaining competitive performance comparable to full-sized LLMs while ensuring robust privacy protection through its federated architecture. Our code has been contributed to the FATE open-source project and is now publicly accessible at https://github.com/FederatedAI/FATE-LLM/tree/main/python/fate_llm/algo/ppc-gpt