Guojun Yin


2025

pdf bib
RLAE: Reinforcement Learning-Assisted Ensemble for LLMs
Yuqian Fu | Yuanheng Zhu | Jiajun Chai | Guojun Yin | Wei Lin | Qichao Zhang | Dongbin Zhao
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Ensembling large language models (LLMs) can effectively combine diverse strengths of different models, offering a promising approach to enhance performance across various tasks. However, existing methods typically rely on fixed weighting strategies that fail to adapt to the dynamic, context-dependent characteristics of LLM capabilities. In this work, we propose **R**einforcement **L**earning-**A**ssisted **E**nsemble for LLMs (RLAE), a novel framework that reformulates LLM ensemble through the lens of a Markov Decision Process (MDP). Our approach introduces a RL agent that dynamically adjusts ensemble weights by considering both input context and intermediate generation states, with the agent being trained using rewards that directly correspond to the quality of final outputs. We implement RLAE using both single-agent and multi-agent reinforcement learning algorithms (RLAE_PPO and RLAE_MAPPO ), demonstrating substantial improvements over conventional ensemble methods. Extensive evaluations on a diverse set of tasks show that RLAE outperforms existing approaches by up to 3.3\\% accuracy points, offering a more effective framework for LLM ensembling. Furthermore, our method exhibits superior generalization capabilities across different tasks without the need for retraining, while simultaneously achieving lower time latency. The source code is available at here.

pdf bib
Beyond Static Testbeds: An Interaction-Centric Agent Simulation Platform for Dynamic Recommender Systems
Song Jin | Juntian Zhang | Yuhan Liu | Xun Zhang | Yufei Zhang | Guojun Yin | Fei Jiang | Wei Lin | Rui Yan
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Evaluating and iterating upon recommender systems is crucial, yet traditional A/B testing is resource-intensive, and offline methods struggle with dynamic user-platform interactions. While agent-based simulation is promising, existing platforms often lack a mechanism for user actions to dynamically reshape the environment. To bridge this gap, we introduce RecInter , a novel agent-based simulation platform for recommender systems featuring a robust interaction mechanism. In RecInter platform, simulated user actions (e.g., likes, reviews, purchases) dynamically update item attributes in real-time, and introduced Merchant Agents can reply, fostering a more realistic and evolving ecosystem. High-fidelity simulation is ensured through Multidimensional User Profiling module, Advanced Agent Architecture, and LLM fine-tuned on Chain-of-Thought (CoT) enriched interaction data. Our platform achieves significantly improved simulation credibility and successfully replicates emergent phenomena like Brand Loyalty and the Matthew Effect. Experiments demonstrate that this interaction mechanism is pivotal for simulating realistic system evolution, establishing our platform as a credible testbed for recommender systems research. All codes are released in https://github.com/jinsong8/RecInter.