Recent advances in multimodal large language models (MLLMs) and diffusion models (DMs) have opened new possibilities for AI-generated content. Yet, personalized cover image generation remains underexplored, despite its critical role in boosting user engagement on digital platforms. We propose ICG, a novel framework that integrates MLLM-based prompting with personalized preference alignment to generate high-quality, contextually relevant covers. ICG extracts semantic features from item titles and reference images via meta tokens, refines them with user embeddings, and injects the resulting personalized context into the diffusion model. To address the lack of labeled supervision, we adopt a multi-reward learning strategy that combines public aesthetic and relevance rewards with a personalized preference model trained from user behavior. Unlike prior pipelines relying on handcrafted prompts and disjointed modules, ICG employs an adapter to bridge MLLMs and diffusion models for end-to-end training. Experiments demonstrate that ICG significantly improves image quality, semantic fidelity, and personalization, leading to stronger user appeal and offline recommendation accuracy in downstream tasks. As a plug-and-play adapter bridging MLLMs and diffusion models, ICG is compatible with common checkpoints and requires no ground-truth labels during optimization.
Recent advancements in Large Language Models (LLMs) have significantly propelled the development of Conversational Recommendation Agents (CRAs). However, these agents often generate short-sighted responses that fail to sustain user guidance and meet expectations. Although preference optimization has proven effective in aligning LLMs with user expectations, it remains costly and performs poorly in multi-turn dialogue. To address this challenge, we introduce a novel multi-turn preference optimization (MTPO) paradigm **ECPO**, which leverages Expectation Confirmation Theory to explicitly model the evolution of user satisfaction throughout multi-turn dialogues, uncovering the underlying causes of dissatisfaction. These causes can be utilized to support targeted optimization of unsatisfactory responses, thereby achieving turn-level preference optimization. ECPO eliminates the significant sampling overhead of existing MTPO methods while ensuring the optimization process drives meaningful improvements. To support ECPO, we also introduce an LLM-based user simulator, **AILO**, to simulate user feedback and expectation confirmation during conversational recommendations. Experimental results show that ECPO significantly enhances CRA’s interaction capabilities, offering notable improvements in both efficiency and effectiveness over existing MTPO methods.
Personalized news recommendation is an essential technique to help users find interested news. Accurately matching user’s interests and candidate news is the key to news recommendation. Most existing methods learn a single user embedding from user’s historical behaviors to represent the reading interest. However, user interest is usually diverse and may not be adequately modeled by a single user embedding. In this paper, we propose a poly attention scheme to learn multiple interest vectors for each user, which encodes the different aspects of user interest. We further propose a disagreement regularization to make the learned interests vectors more diverse. Moreover, we design a category-aware attention weighting strategy that incorporates the news category information as explicit interest signals into the attention mechanism. Extensive experiments on the MIND news recommendation benchmark demonstrate that our approach significantly outperforms existing state-of-the-art methods.