Contrastive Language–Audio Pretraining (CLAP) models learn by aligning audio and text in a shared embedding space, enabling powerful zero-shot recognition. However, their performance is highly sensitive to prompt formulation and language nuances, and they often inherit semantic ambiguities and spurious correlations from noisy pretraining data. While prior work has explored prompt engineering, adapters, and prefix tuning to address these limitations, the use of structured prior knowledge remains largely unexplored. We present iKnow-audio, a framework that integrates knowledge graphs with audio-language models to provide robust semantic grounding. iKnow-audio builds on the Audio-centric Knowledge Graph (AKG), which encodes ontological relations comprising semantic, causal, and taxonomic connections reflective of everyday sound scenes and events. By training knowlege graph embedding models on the AKG and refining CLAP predictions through this structured knowledge, iKnow-audio improves disambiguation of acoustically similar sounds and reduces reliance on prompt engineering. Comprehensive zero-shot evaluations across six benchmark datasets demonstrate consistent gains over baseline CLAP, supported by embedding-space analyses that highlight improved relational grounding. Resources are publicly available at https://github.com/michelolzam/iknow-audio
One of the main challenges in the field of Embodied Conversational Agent (ECA) is to generate socially believable agents. The common strategy for agent behaviour synthesis is to rely on dedicated corpus analysis. Such a corpus is composed of multimedia files of socio-emotional behaviors which have been annotated by external observers. The underlying idea is to identify interaction information for the agent’s socio-emotional behavior by checking whether the intended socio-emotional behavior is actually perceived by humans. Then, the annotations can be used as learning classes for machine learning algorithms applied to the social signals. This paper introduces the POTUS Corpus composed of high-quality audio-video files of political addresses to the American people. Two protagonists are present in this database. First, it includes speeches of former president Barack Obama to the American people. Secondly, it provides videos of these same speeches given by a virtual agent named Rodrigue. The ECA reproduces the original address as closely as possible using social signals automatically extracted from the original one. Both are annotated for social attitudes, providing information about the stance observed in each file. It also provides the social signals automatically extracted from Obama’s addresses used to generate Rodrigue’s ones.
The present research focuses on annotation issues in the context of the acoustic detection of fear-type emotions for surveillance applications. The emotional speech material used for this study comes from the previously collected SAFE Database (Situation Analysis in a Fictional and Emotional Database) which consists of audio-visual sequences extracted from movie fictions. A generic annotation scheme was developed to annotate the various emotional manifestations contained in the corpus. The annotation was carried out by two labellers and the two annotations strategies are confronted. It emerges that the borderline between emotion and neutral vary according to the labeller. An acoustic validation by a third labeller allows at analysing the two strategies. Two human strategies are then observed: a first one, context-oriented which mixes audio and contextual (video) information in emotion categorization; and a second one, based mainly on audio information. The k-means clustering confirms the role of audio cues in human annotation strategies. It particularly helps in evaluating those strategies from the point of view of a detection system based on audio cues.