Retrieval-augmented Generation (RAG) is powerful, but its effectiveness hinges on which retrievers we use and how. Different retrievers offer distinct, often complementary signals: BM25 captures lexical matches; dense retrievers, semantic similarity. Yet in practice, we typically fix a single retriever based on heuristics, which fails to generalize across diverse information needs. Can we dynamically select and integrate multiple retrievers for each individual query, without the need for manual selection? In our work, we validate this intuition with quantitative analysis and introduce a mixture of retrievers: a zero-shot, weighted combination of heterogeneous retrievers. Extensive experiments show that such mixtures are effective and efficient: Despite totaling just 0.8B parameters, this mixture outperforms every individual retriever and even larger 7B models—by +10.8% and +3.9% on average, respectively. Further analysis also shows that this mixture framework can help incorporate specialized non-oracle human information sources as retrievers to achieve good collaboration, with a 58.9% relative performance improvement over simulated humans alone.
Meta-evaluation of automatic evaluation metrics—assessing evaluation metrics themselves—is crucial for accurately benchmarking natural language processing systems and has implications for scientific inquiry, production model development, and policy enforcement. While existing approaches to metric meta-evaluation focus on general statements about the absolute and relative quality of metrics across arbitrary system outputs, in practice, metrics are applied in highly contextual settings, often measuring the performance for a highly constrained set of system outputs. For example, we may only be interested in evaluating a specific model or class of models. We introduce a method for contextual metric meta-evaluation by comparing the local metric accuracy of evaluation metrics. Across translation, speech recognition, and ranking tasks, we demonstrate that the local metric accuracies vary both in absolute value and relative effectiveness as we shift across evaluation contexts. This observed variation highlights the importance of adopting context-specific metric evaluations over global ones.
Productive interactions between diverse users and language technologies require outputs from the latter to be culturally relevant and sensitive. Prior works have evaluated models’ knowledge of cultural norms, values, and artefacts, without considering how this knowledge manifests in downstream applications. In this work, we focus on extrinsic evaluation of cultural competence in two text generation tasks, open-ended question answering and story generation. We quantitatively and qualitatively evaluate model outputs when an explicit cue of culture, specifically nationality, is perturbed in the prompts. Although we find that model outputs do vary when varying nationalities and feature culturally relevant words, we also find weak correlations between text similarity of outputs for different countries and the cultural values of these countries. Finally, we discuss important considerations in designing comprehensive evaluation of cultural competence in user-facing tasks.