Retrieval-augmented Generation (RAG) is powerful, but its effectiveness hinges on which retrievers we use and how. Different retrievers offer distinct, often complementary signals: BM25 captures lexical matches; dense retrievers, semantic similarity. Yet in practice, we typically fix a single retriever based on heuristics, which fails to generalize across diverse information needs. Can we dynamically select and integrate multiple retrievers for each individual query, without the need for manual selection? In our work, we validate this intuition with quantitative analysis and introduce a mixture of retrievers: a zero-shot, weighted combination of heterogeneous retrievers. Extensive experiments show that such mixtures are effective and efficient: Despite totaling just 0.8B parameters, this mixture outperforms every individual retriever and even larger 7B models—by +10.8% and +3.9% on average, respectively. Further analysis also shows that this mixture framework can help incorporate specialized non-oracle human information sources as retrievers to achieve good collaboration, with a 58.9% relative performance improvement over simulated humans alone.
Large language models (LLMs) have demonstrated remarkable capabilities across a wide range of tasks in various domains. Despite their impressive performance, they can be unreliable due to factual errors in their generations. Assessing their confidence and calibrating them across different tasks can help mitigate risks and enable LLMs to produce better generations. There has been a lot of recent research aiming to address this, but there has been no comprehensive overview to organize it and to outline the main lessons learned. The present survey aims to bridge this gap. In particular, we outline the challenges and we summarize recent technical advancements for LLM confidence estimation and calibration. We further discuss their applications and suggest promising directions for future work.
As the labeling cost for different modules in task-oriented dialog (ToD) systems is expensive, a major challenge is to train different modules with the least amount of labeled data. Recently, large-scale pre-trained language models, have shown promising results for few-shot learning in ToD. In this paper, we devise a self-training approach to utilize the abundant unlabeled dialog data to further improve state-of-the-art pre-trained models in few-shot learning scenarios for ToD systems. Specifically, we propose a self-training approach that iteratively labels the most confident unlabeled data to train a stronger Student model. Moreover, a new text augmentation technique (GradAug) is proposed to better train the Student by replacing non-crucial tokens using a masked language model. We conduct extensive experiments and present analyses on four downstream tasks in ToD, including intent classification, dialog state tracking, dialog act prediction, and response selection. Empirical results demonstrate that the proposed self-training approach consistently improves state-of-the-art pre-trained models (BERT, ToD-BERT) when only a small number of labeled data are available.