2025
pdf
bib
abs
Commonsense Subgraph for Inductive Relation Reasoning with Meta-learning
Feng Zhao
|
Zhilu Zhang
|
Cheng Yan
|
Xianggan Liu
Proceedings of the 31st International Conference on Computational Linguistics
In knowledge graphs (KGs), predicting missing relations is a critical reasoning task. Recent subgraph-based models have delved into inductive settings, which aim to predict relations between newly added entities. While these models have demonstrated the ability for inductive reasoning, they only consider the structural information of the subgraph and neglect the loss of semantic information caused by replacing entities with nodes. To address this problem, we propose a novel Commonsense Subgraph Meta-Learning (CSML) model. Specifically, we extract concepts from entities, which can be viewed as high-level semantic information. Unlike previous methods, we use concepts instead of nodes to construct commonsense subgraphs. By combining these with structural subgraphs, we can leverage both structural and semantic information for more comprehensive and rational predictions. Furthermore, we regard concepts as meta-information and employ meta-learning to facilitate rapid knowledge transfer, thus addressing more complex few-shot scenarios. Experimental results confirm the superior performance of our model in both standard and few-shot inductive reasoning.
pdf
bib
abs
SEA: Supervised Embedding Alignment for Token-Level Visual-Textual Integration in MLLMs
Yuanyang Yin
|
Yaqi Zhao
|
Yajie Zhang
|
Yuanxing Zhang
|
Ke Lin
|
Jiahao Wang
|
Xin Tao
|
Pengfei Wan
|
Wentao Zhang
|
Feng Zhao
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities by integrating visual and textual inputs, yet modality alignment remains one of the most challenging aspects. Current MLLMs typically rely on simple adapter architectures and pretraining approaches to bridge vision encoders with large language models (LLM), guided by image-level supervision. We identify this paradigm often leads to suboptimal alignment between modalities, significantly constraining the LLM’s ability to properly interpret and reason with visual features particularly for smaller language models. To address this fundamental limitation, we propose Supervised Embedding Alignment (SEA), a token-level supervision alignment method that enables more precise visual-text alignment during pretraining. SEA introduces minimal computational overhead while preserving language capabilities and substantially improving cross-modal understanding. Our comprehensive analyses reveal critical insights into the adapter’s role in multimodal integration, and extensive experiments demonstrate that SEA consistently improves performance across various model sizes, with smaller models benefiting the most (average performance gain of 7.61% for Gemma-2B). This work establishes a foundation for developing more effective alignment strategies for future multimodal systems.
pdf
bib
abs
ViDoRAG: Visual Document Retrieval-Augmented Generation via Dynamic Iterative Reasoning Agents
Qiuchen Wang
|
Ruixue Ding
|
Zehui Chen
|
Weiqi Wu
|
Shihang Wang
|
Pengjun Xie
|
Feng Zhao
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Understanding information from visually rich documents remains a significant challenge for traditional Retrieval-Augmented Generation (RAG) methods. Existing benchmarks predominantly focus on image-based question answering (QA), overlooking the fundamental challenges of efficient retrieval, comprehension, and reasoning within dense visual documents. To bridge this gap, we introduce ViDoSeek, a novel dataset designed to evaluate RAG performance on visually rich documents requiring complex reasoning. Based on it, we identify key limitations in current RAG approaches: (i) purely visual retrieval methods struggle to effectively integrate both textual and visual features, and (ii) previous approaches often allocate insufficient reasoning tokens, limiting their effectiveness. To address these challenges, we propose ViDoRAG, a novel multi-agent RAG framework tailored for complex reasoning across visual documents. ViDoRAG employs a Gaussian Mixture Model (GMM)-based hybrid strategy to effectively handle multi-modal retrieval. To further elicit the model’s reasoning capabilities, we introduce an iterative agent workflow incorporating exploration, summarization, and reflection, providing a framework for investigating test-time scaling in RAG domains. Extensive experiments on ViDoSeek validate the effectiveness and generalization of our approach. Notably, ViDoRAG outperforms existing methods by over 10% on the competitive ViDoSeek benchmark. The code will be available.
pdf
bib
abs
Priority on High-Quality: Selecting Instruction Data via Consistency Verification of Noise Injection
Hong Zhang
|
Feng Zhao
|
Ruilin Zhao
|
Cheng Yan
|
Kangzheng Liu
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Large Language Models (LLMs) have demonstrated a remarkable understanding of language nuances through instruction tuning, enabling them to effectively tackle various natural language processing tasks. Recent research has focused on the quality of instruction data rather than the quantity of instructions. However, existing high-quality instruction selection methods rely on external models or rules, overlooking the intrinsic association between pre-trained model and instruction data, making it difficult to select data that align with the preferences of pre-trained model. To address this challenge, we propose a strategy that utilizes noise injection to identify the quality of instruction data, without relying on external model. We also implement the strategy of combining inter-class diversity and intra-class diversity to improve model performance. The experimental results demonstrate that our method significantly outperforms the model trained on the entire dataset and established baselines. Our study provides a new perspective on noise injection in the field of instruction tuning, and also illustrates that the pre-trained model itself should be considered in defining high-quality. Additionally, we publish our selected high-quality instruction data.
pdf
bib
abs
LGA: LLM-GNN Aggregation for Temporal Evolution Attribute Graph Prediction
Feng Zhao
|
Ruoyu Chai
|
Kangzheng Liu
|
Xianggan Liu
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Temporal evolution attribute graph prediction, a key task in graph machine learning, aims to forecast the dynamic evolution of node attributes over time. While recent advances in Large Language Models (LLMs) have enabled their use in enhancing node representations for integration with Graph Neural Networks (GNNs), their potential to directly perform GNN-like aggregation and interaction remains underexplored. Furthermore, traditional approaches to initializing attribute embeddings often disregard structural semantics, limiting the provision of rich prior knowledge to GNNs. Current methods also primarily focus on 1-hop neighborhood aggregation, lacking the capability to capture complex structural interactions. To address these limitations, we propose a novel prediction framework that integrates structural information into attribute embeddings through the introduction of an attribute embedding loss. We design specialized prompts to enable LLMs to perform GNN-like aggregation and incorporate a relation-aware Graph Convolutional Network to effectively capture long-range and complex structural dependencies. Extensive experiments on multiple real-world datasets validate the effectiveness of our approach, demonstrating significant improvements in predictive performance over existing methods.
pdf
bib
abs
CRITICTOOL: Evaluating Self-Critique Capabilities of Large Language Models in Tool-Calling Error Scenarios
Shiting Huang
|
Zhen Fang
|
Zehui Chen
|
Siyu Yuan
|
Junjie Ye
|
Yu Zeng
|
Lin Chen
|
Qi Mao
|
Feng Zhao
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
The ability of large language models (LLMs) to utilize external tools has enabled them to tackle an increasingly diverse range of tasks. However, as the tasks become more complex and long-horizon, the intricate tool utilization process may trigger various unexpected errors. Therefore, how to effectively handle such errors, including identifying, diagnosing, and recovering from them, has emerged as a key research direction for advancing tool learning. In this work, we first extensively analyze the types of errors encountered during the function-calling process on several competitive tool evaluation benchmarks. Based on it, we introduce CRITICTOOL, a comprehensive critique evaluation benchmark specialized for tool learning. Building upon a novel evolutionary strategy for dataset construction, CRITICTOOL holds diverse tool-use errors with varying complexities, which better reflects real-world scenarios. We conduct extensive experiments on CRITICTOOL, and validate the generalization and effectiveness of our constructed benchmark strategy. We also provide an in-depth analysis of the tool reflection ability on various LLMs, offering a new perspective on the field of tool learning in LLMs. The code is available at https://github.com/Shellorley0513/CriticTool.
pdf
bib
abs
Enhancing Large Vision-Language Models with Ultra-Detailed Image Caption Generation
Yu Zeng
|
Yukun Qi
|
Yiming Zhao
|
Xikun Bao
|
Lin Chen
|
Zehui Chen
|
Shiting Huang
|
Jie Zhao
|
Feng Zhao
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
High-quality image captions are essential for improving modality alignment and visual understanding in Large Vision-Language Models (LVLMs). However, the scarcity of ultra-detailed image caption data limits further advancements. This paper presents a systematic pipeline for generating high-quality, ultra-detailed image captions, encompassing both pre-processing and post-processing stages. In the pre-processing stage, we classify and deduplicate images, extract visual information using expert tools, and leverage GPT-4o with structured prompts to generate initial captions. To enhance comprehensiveness, we introduce an expansion strategy based on Large Language Models (LLMs), defining eight descriptive dimensions to refine and extend captions, which serve as seed data for training a proprietary captioner model. In the post-processing stage, we incorporate human error-correction annotations and an active learning-inspired approach to refine low-quality samples. Using high-quality corrected data, we apply Direct Preference Optimization (DPO) and develop a critic-rewrite pipeline, training a sentence-level critic model to mitigate hallucinations. Experimental results demonstrate that our ultra-detailed captions significantly enhance LVLMs’ perception and cognitive abilities across multiple vision-language benchmarks. The code and dataset are available at https://github.com/yuzeng0-0/UltraCaption.
pdf
bib
abs
Correcting on Graph: Faithful Semantic Parsing over Knowledge Graphs with Large Language Models
Ruilin Zhao
|
Feng Zhao
|
Hong Zhang
Findings of the Association for Computational Linguistics: ACL 2025
Complex multi-hop questions often require comprehensive retrieval and reasoning. As a result, effectively parsing such questions and establishing an efficient interaction channel between large language models (LLMs) and knowledge graphs (KGs) is essential for ensuring reliable reasoning. In this paper, we present a novel semantic parsing framework Correcting on Graph (CoG), aiming to establish faithful logical queries that connect LLMs and KGs. We first propose a structured knowledge decoding that enables the LLM to generate fact-aware logical queries during inference, while leveraging its parametric knowledge to fill in the blank intermediate entities. Then, we introduce a knowledge path correction that combines the logical query with KGs to correct hallucination entities and path deficiencies in the generated content, ensuring the reliability and comprehensiveness of the retrieved knowledge. Extensive experiments demonstrate that CoG outperforms the state-of-the-art KGQA methods on two knowledge-intensive question answering benchmarks. CoG achieves a high answer hit rate and exhibits competitive F1 performance for complex multi-hop questions.
2024
pdf
bib
abs
T-Eval: Evaluating the Tool Utilization Capability of Large Language Models Step by Step
Zehui Chen
|
Weihua Du
|
Wenwei Zhang
|
Kuikun Liu
|
Jiangning Liu
|
Miao Zheng
|
Jingming Zhuo
|
Songyang Zhang
|
Dahua Lin
|
Kai Chen
|
Feng Zhao
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Large language models (LLMs) have achieved remarkable performance on various NLP tasks and are augmented by tools for broader applications. Yet, how to evaluate and analyze the tool utilization capability of LLMs is still under-explored. In contrast to previous works that evaluate models holistically, we comprehensively decompose the tool utilization into multiple sub-processes, including instruction following, planning, reasoning, retrieval, understanding, and review. Based on that, we further introduce T-Eval to evaluate the tool-utilization capability step by step. T-Eval disentangles the tool utilization evaluation into several sub-domains along model capabilities, facilitating the inner understanding of both holistic and isolated competency of LLMs. We conduct extensive experiments on T-Eval and in-depth analysis of various LLMs. T-Eval not only exhibits consistency with the outcome-oriented evaluation but also provides a more fine-grained analysis of the capabilities of LLMs, providing a new perspective in LLM evaluation on tool-utilization ability. The benchmark will be available.
pdf
bib
abs
PsySafe: A Comprehensive Framework for Psychological-based Attack, Defense, and Evaluation of Multi-agent System Safety
Zaibin Zhang
|
Yongting Zhang
|
Lijun Li
|
Hongzhi Gao
|
Lijun Wang
|
Huchuan Lu
|
Feng Zhao
|
Yu Qiao
|
Jing Shao
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Multi-agent systems, when enhanced with Large Language Models (LLMs), exhibit profound capabilities in collective intelligence. However, the potential misuse of this intelligence for malicious purposes presents significant risks. To date, comprehensive research on the safety issues associated with multi-agent systems remains limited. In this paper, we explore these concerns through the innovative lens of agent psychology, revealing that the dark psychological states of agents constitute a significant threat to safety.To tackle these concerns, we propose a comprehensive framework (PsySafe) grounded in agent psychology, focusing on three key areas: firstly, identifying how dark personality traits in agents can lead to risky behaviors; secondly, evaluating the safety of multi-agent systems from the psychological and behavioral perspectives, and thirdly, devising effective strategies to mitigate these risks.Our experiments reveal several intriguing phenomena, such as the collective dangerous behaviors among agents, agents’ self-reflection when engaging in dangerous behavior, and the correlation between agents’ psychological assessments and dangerous behaviors. We anticipate that our framework and observations will provide valuable insights for further research into the safety of multi-agent systems. We make our data and code publicly accessible at https://github.com/AI4Good24/PsySafe.
pdf
bib
abs
Agent-FLAN: Designing Data and Methods of Effective Agent Tuning for Large Language Models
Zehui Chen
|
Kuikun Liu
|
Qiuchen Wang
|
Wenwei Zhang
|
Jiangning Liu
|
Dahua Lin
|
Kai Chen
|
Feng Zhao
Findings of the Association for Computational Linguistics: ACL 2024
Open-sourced Large Language Models (LLMs) have achieved great success in various NLP tasks, however, they are still far inferior to API-based models when acting as agents. How to integrate agent ability into general LLMs becomes a crucial and urgent problem.This paper first delivers three key observations: (1) the current agent training corpus is entangled with both formats following and agent reasoning, which significantly shifts from the distribution of its pre-training data; (2) LLMs exhibit different learning speeds on the capabilities required by agent tasks; and (3) current approaches have side-effects when improving agent abilities by introducing hallucinations. Based on the above findings, we propose Agent-FLAN to effectively Fine-tune LANguage models for Agents.Through careful decomposition and redesign of the training corpus, Agent-FLAN enables Llama2-7B to outperform prior best works by 3.5% across various agent evaluation datasets. With comprehensively constructed negative samples, Agent-FLAN greatly alleviates the hallucination issues based on our established evaluation benchmark. Besides, it consistently improves the agent capability of LLMs when scaling model sizes while slightly enhancing the general capability of LLMs. The code and models are available at https://github.com/InternLM/Agent-FLAN.
pdf
bib
abs
Correcting Language Model Bias for Text Classification in True Zero-Shot Learning
Feng Zhao
|
Wan Xianlin
|
Cheng Yan
|
Chu Kiong Loo
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Combining pre-trained language models (PLMs) and manual templates is a common practice for text classification in zero-shot scenarios. However, the effect of this approach is highly volatile, ranging from random guesses to near state-of-the-art results, depending on the quality of the manual templates. In this paper, we show that this instability stems from the fact that language models tend toward predicting certain label words of text classification, and manual templates can influence this tendency. To address this, we develop a novel pipeline for annotating and filtering a few examples from unlabeled examples. Moreover, we propose a new method to measure model bias on label words that utilizes unlabeled examples as a validation set when tuning language models. Our approach does not require any pre-labeled examples. Experimental results on six text classification tasks demonstrate that the proposed approach significantly outperforms standard prompt learning in zero-shot settings, achieving up to 19.7% absolute improvement and 13.8% average improvement. More surprisingly, on IMDB and SST-2, our approach even exceeds all few-shot baselines.
2023
pdf
bib
abs
Structure-aware Knowledge Graph-to-text Generation with Planning Selection and Similarity Distinction
Feng Zhao
|
Hongzhi Zou
|
Cheng Yan
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
The knowledge graph-to-text (KG-to-text) generation task aims to synthesize coherent and engaging sentences that accurately convey the complex information derived from an input knowledge graph. One of the primary challenges in this task is bridging the gap between the diverse structures of the KG and the target text, while preserving the details of the input KG. To address this, we propose a novel approach that efficiently integrates graph structure-aware modules with pre-trained language models. Unlike conventional techniques, which only consider direct connections between first-order neighbors, our method delves deeper by incorporating Relative Distance Encoding as a bias within the graph structure-aware module. This enables our model to better capture the intricate topology information present in the KG. To further elevate the fidelity of the generated text, Planning Selection and Similarity Distinction are introduced. Our approach filters the most relevant linearized sequences by employing a planning scorer, while simultaneously distinguishing similar input KGs through contrastive learning techniques. Experiments on two datasets demonstrate the superiority of our model.
2022
pdf
bib
abs
OpticE: A Coherence Theory-Based Model for Link Prediction
Xiangyu Gui
|
Feng Zhao
|
Langjunqing Jin
|
Hai Jin
Proceedings of the 29th International Conference on Computational Linguistics
Knowledge representation learning is a key step required for link prediction tasks with knowledge graphs (KGs). During the learning process, the semantics of each entity are embedded by a vector or a point in a feature space. The distance between these points is a measure of semantic similarity. However, in a KG, while two entities may have similar semantics in some relations, they have different semantics in others. It is ambiguous to assign a fixed distance to depict the variant semantic similarity of entities. To alleviate the semantic ambiguity in KGs, we design a new embedding approach named OpticE, which is derived from the well-known physical phenomenon of optical interference. It is a lightweight and relation-adaptive model based on coherence theory, in which each entity’s semantics vary automatically regarding different relations. In addition, a unique negative sampling method is proposed to combine the multimapping properties and self-adversarial learning during the training process. The experimental results obtained on practical KG benchmarks show that the OpticE model, with elegant structures, can compete with existing link prediction methods.
pdf
bib
abs
RelCLIP: Adapting Language-Image Pretraining for Visual Relationship Detection via Relational Contrastive Learning
Yi Zhu
|
Zhaoqing Zhu
|
Bingqian Lin
|
Xiaodan Liang
|
Feng Zhao
|
Jianzhuang Liu
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Conventional visual relationship detection models only use the numeric ids of relation labels for training, but ignore the semantic correlation between the labels, which leads to severe training biases and harms the generalization ability of representations. In this paper, we introduce compact language information of relation labels for regularizing the representation learning of visual relations. Specifically, we propose a simple yet effective visual Relationship prediction framework that transfers natural language knowledge learned from Contrastive Language-Image Pre-training (CLIP) models to enhance the relationship prediction, termed RelCLIP. Benefiting from the powerful visual-semantic alignment ability of CLIP at image level, we introduce a novel Relational Contrastive Learning (RCL) approach which explores relation-level visual-semantic alignment via learning to match cross-modal relational embeddings. By collaboratively learning the semantic coherence and discrepancy from relation triplets, the model can generate more discriminative and robust representations. Experimental results on the Visual Genome dataset show that RelCLIP achieves significant improvements over strong baselines under full (provide accurate labels) and distant supervision (provide noise labels), demonstrating its powerful generalization ability in learning relationship representations. Code will be available at https://gitee.com/mindspore/models/tree/master/research/cv/RelCLIP.
pdf
bib
abs
Can Language Models Serve as Temporal Knowledge Bases?
Ruilin Zhao
|
Feng Zhao
|
Guandong Xu
|
Sixiao Zhang
|
Hai Jin
Findings of the Association for Computational Linguistics: EMNLP 2022
Recent progress regarding the use of language models (LMs) as knowledge bases (KBs) has shown that language models can act as structured knowledge bases for storing relational facts. However, most existing works only considered the LM-as-KB paradigm in a static setting, which ignores the analysis of temporal dynamics of world knowledge. Furthermore, a basic function of KBs, i.e., the ability to store conflicting information (i.e., 1-N, N-1, and N-M relations), is underexplored. In this paper, we formulate two practical requirements for treating LMs as temporal KBs: (i) The capacity to store temporally-scoped knowledge that contains conflicting information and (ii) the ability to use stored knowledge for temporally-scoped knowledge queries. We introduce a new dataset called LAMA-TK which is aimed at probing temporally-scoped knowledge, and investigate the two above requirements to explore the LM-as-KB paradigm in the temporal domain. On the one hand, experiments show that LMs can memorize millions of temporally-scoped facts with relatively high accuracy and transfer stored knowledge to temporal knowledge queries, thereby expanding the LM-as-KB paradigm to the temporal domain. On the other hand, we show that memorizing conflicting information, which has been neglected by previous works, is still challenging for LMs and hinders the memorization of other unrelated one-to-one relationships.