Felermino Dario Mario Ali


2025

pdf bib
SemEval-2025 Task 11: Bridging the Gap in Text-Based Emotion Detection
Shamsuddeen Hassan Muhammad | Nedjma Ousidhoum | Idris Abdulmumin | Seid Muhie Yimam | Jan Philip Wahle | Terry Lima Ruas | Meriem Beloucif | Christine De Kock | Tadesse Destaw Belay | Ibrahim Said Ahmad | Nirmal Surange | Daniela Teodorescu | David Ifeoluwa Adelani | Alham Fikri Aji | Felermino Dario Mario Ali | Vladimir Araujo | Abinew Ali Ayele | Oana Ignat | Alexander Panchenko | Yi Zhou | Saif Mohammad
Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)

We present our shared task on text-based emotion detection, covering more than 30 languages from seven distinct language families. These languages are predominantly low-resource and spoken across various continents. The data instances are multi-labeled into six emotional classes, with additional datasets in 11 languages annotated for emotion intensity. Participants were asked to predict labels in three tracks: (a) emotion labels in monolingual settings, (b) emotion intensity scores, and (c) emotion labels in cross-lingual settings.

pdf bib
Evaluating WMT 2025 Metrics Shared Task Submissions on the SSA-MTE African Challenge Set
Senyu Li | Felermino Dario Mario Ali | Jiayi Wang | Rui Sousa-Silva | Henrique Lopes Cardoso | Pontus Stenetorp | Colin Cherry | David Ifeoluwa Adelani
Proceedings of the Tenth Conference on Machine Translation

This paper presents the evaluation of submissions to the WMT 2025 Metrics Shared Task on the SSA-MTE challenge set, a large-scale benchmark for machine translation evaluation (MTE) in Sub-Saharan African languages. The SSA-MTE test sets contains over 12,768 human-annotated adequacy scores across 11 language pairs sourced from English, French, and Portuguese, spanning 6 commercial and open-source MT systems. Results show that correlations with human judgments remain generally low, with most systems falling below the 0.4 Spearman threshold for medium-level agreement. Performance varies widely across language pairs, with most correlations under 0.4; in some extremely low-resource cases, such as Portuguese–Emakhuwa, correlations drop to around 0.1, underscoring the difficulty of evaluating MT for very low-resource African languages. These findings highlight the urgent need for more research on robust, generalizable MT evaluation methods tailored for African languages.

2024

pdf bib
Detecting Loanwords in Emakhuwa: An Extremely Low-Resource Bantu Language Exhibiting Significant Borrowing from Portuguese
Felermino Dario Mario Ali | Henrique Lopes Cardoso | Rui Sousa-Silva
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

The accurate identification of loanwords within a given text holds significant potential as a valuable tool for addressing data augmentation and mitigating data sparsity issues. Such identification can improve the performance of various natural language processing tasks, particularly in the context of low-resource languages that lack standardized spelling conventions.This research proposes a supervised method to identify loanwords in Emakhuwa, borrowed from Portuguese. Our methodology encompasses a two-fold approach. Firstly, we employ traditional machine learning algorithms incorporating handcrafted features, including language-specific and similarity-based features. We build upon prior studies to extract similarity features and propose utilizing two external resources: a Sequence-to-Sequence model and a dictionary. This innovative approach allows us to identify loanwords solely by analyzing the target word without prior knowledge about its donor counterpart. Furthermore, we fine-tune the pre-trained CANINE model for the downstream task of loanword detection, which culminates in the impressive achievement of the F1-score of 93%. To the best of our knowledge, this study is the first of its kind focusing on Emakhuwa, and the preliminary results are promising as they pave the way to further advancements.

pdf bib
Expanding FLORES+ Benchmark for More Low-Resource Settings: Portuguese-Emakhuwa Machine Translation Evaluation
Felermino Dario Mario Ali | Henrique Lopes Cardoso | Rui Sousa-Silva
Proceedings of the Ninth Conference on Machine Translation

As part of the Open Language Data Initiative shared tasks, we have expanded the FLORES+ evaluation set to include Emakhuwa, a low-resource language widely spoken in Mozambique. We translated the dev and devtest sets from Portuguese into Emakhuwa, and we detail the translation process and quality assurance measures used. Our methodology involved various quality checks, including post-editing and adequacy assessments. The resulting datasets consist of multiple reference sentences for each source. We present baseline results from training a Neural Machine Translation system and fine-tuning existing multilingual translation models. Our findings suggest that spelling inconsistencies remain a challenge in Emakhuwa. Additionally, the baseline models underperformed on this evaluation set, underscoring the necessity for further research to enhance machine translation quality for Emakhuwa.The data is publicly available at https://huggingface.co/datasets/LIACC/Emakhuwa-FLORES