Felermino D. M. A. Ali


2025

pdf bib
BRIGHTER: BRIdging the Gap in Human-Annotated Textual Emotion Recognition Datasets for 28 Languages
Shamsuddeen Hassan Muhammad | Nedjma Ousidhoum | Idris Abdulmumin | Jan Philip Wahle | Terry Ruas | Meriem Beloucif | Christine de Kock | Nirmal Surange | Daniela Teodorescu | Ibrahim Said Ahmad | David Ifeoluwa Adelani | Alham Fikri Aji | Felermino D. M. A. Ali | Ilseyar Alimova | Vladimir Araujo | Nikolay Babakov | Naomi Baes | Ana-Maria Bucur | Andiswa Bukula | Guanqun Cao | Rodrigo Tufiño | Rendi Chevi | Chiamaka Ijeoma Chukwuneke | Alexandra Ciobotaru | Daryna Dementieva | Murja Sani Gadanya | Robert Geislinger | Bela Gipp | Oumaima Hourrane | Oana Ignat | Falalu Ibrahim Lawan | Rooweither Mabuya | Rahmad Mahendra | Vukosi Marivate | Alexander Panchenko | Andrew Piper | Charles Henrique Porto Ferreira | Vitaly Protasov | Samuel Rutunda | Manish Shrivastava | Aura Cristina Udrea | Lilian Diana Awuor Wanzare | Sophie Wu | Florian Valentin Wunderlich | Hanif Muhammad Zhafran | Tianhui Zhang | Yi Zhou | Saif M. Mohammad
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

People worldwide use language in subtle and complex ways to express emotions. Although emotion recognition–an umbrella term for several NLP tasks–impacts various applications within NLP and beyond, most work in this area has focused on high-resource languages. This has led to significant disparities in research efforts and proposed solutions, particularly for under-resourced languages, which often lack high-quality annotated datasets.In this paper, we present BRIGHTER–a collection of multi-labeled, emotion-annotated datasets in 28 different languages and across several domains. BRIGHTER primarily covers low-resource languages from Africa, Asia, Eastern Europe, and Latin America, with instances labeled by fluent speakers. We highlight the challenges related to the data collection and annotation processes, and then report experimental results for monolingual and crosslingual multi-label emotion identification, as well as emotion intensity recognition. We analyse the variability in performance across languages and text domains, both with and without the use of LLMs, and show that the BRIGHTER datasets represent a meaningful step towards addressing the gap in text-based emotion recognition.

pdf bib
MOZ-Smishing: A Benchmark Dataset for Detecting Mobile Money Frauds
Felermino D. M. A. Ali | Henrique Lopes Cardoso | Rui Sousa-Silva | Saide.saide@unilurio.ac.mz Saide.saide@unilurio.ac.mz
Proceedings of the Sixth Workshop on African Natural Language Processing (AfricaNLP 2025)

Despite the increasing prevalence of smishing attacks targeting Mobile Money Transfer systems, there is a notable lack of publicly available SMS phishing datasets in this domain. This study seeks to address this gap by creating a specialized dataset designed to detect smishing attacks aimed at Mobile Money Transfer users. The data set consists of crowd-sourced text messages from Mozambican mobile users, meticulously annotated into two categories: legitimate messages (ham) and fraudulent smishing attempts (spam). The messages are written in Portuguese, often incorporating microtext styles and linguistic nuances unique to the Mozambican context.We also investigate the effectiveness of LLMs in detecting smishing. Using in-context learning approaches, we evaluate the models’ ability to identify smishing attempts without requiring extensive task-specific training. The data set is released under an open license at the following link: huggingface-Anonymous

pdf bib
SSA-COMET: Do LLMs Outperform Learned Metrics in Evaluating MT for Under-Resourced African Languages?
Senyu Li | Jiayi Wang | Felermino D. M. A. Ali | Colin Cherry | Daniel Deutsch | Eleftheria Briakou | Rui Sousa-Silva | Henrique Lopes Cardoso | Pontus Stenetorp | David Ifeoluwa Adelani
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Evaluating machine translation (MT) quality for under-resourced African languages remains a significant challenge, as existing metrics often suffer from limited language coverage and poor performance in low-resource settings. While recent efforts, such as AfriCOMET, have addressed some of the issues, they are still constrained by small evaluation sets, a lack of publicly available training data tailored to African languages, and inconsistent performance in extremely low-resource scenarios. In this work, we introduce SSA-MTE, a large-scale human-annotated MT evaluation (MTE) dataset covering 13 African language pairs from the News domain, with over 63,000 sentence-level annotations from a diverse set of MT systems. Based on this data, we develop SSA-COMET and SSA-COMET-QE, improved reference-based and reference-free evaluation metrics. We also benchmark prompting-based approaches using state-of-the-art LLMs like GPT-4o and Claude. Our experimental results show that SSA-COMET models significantly outperform AfriCOMET and are competitive with the strongest LLM (Gemini 2.5 Pro) evaluated in our study, particularly on low-resource languages such as Twi, Luo, and Yoruba. All resources are released under open licenses to support future research.

pdf bib
Leveraging Loanword Constraints for Improving Machine Translation in a Low-Resource Multilingual Context
Felermino D. M. A. Ali | Henrique Lopes Cardoso | Rui Sousa-Silva
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

This research investigates how to improve machine translation systems for low-resource languages by integrating loanword constraints as external linguistic knowledge. Focusing on the Portuguese-Emakhuwa language pair, which exhibits significant lexical borrowing, we address the challenge of effectively adapting loanwords during the translation process. To tackle this, we propose a novel approach that augments source sentences with loanword constraints, explicitly linking source-language loanwords to their target-language equivalents. Then, we perform supervised fine-tuning on multilingual neural machine translation models and multiple Large Language Models of different sizes. Our results demonstrate that incorporating loanword constraints leads to significant improvements in translation quality as well as in handling loanword adaptation correctly in target languages, as measured by different machine translation metrics. This approach offers a promising direction for improving machine translation performance in low-resource settings characterized by frequent lexical borrowing.

2024

pdf bib
Building Resources for Emakhuwa: Machine Translation and News Classification Benchmarks
Felermino D. M. A. Ali | Henrique Lopes Cardoso | Rui Sousa-Silva
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

This paper introduces a comprehensive collection of NLP resources for Emakhuwa, Mozambique’s most widely spoken language. The resources include the first manually translated news bitext corpus between Portuguese and Emakhuwa, news topic classification datasets, and monolingual data. We detail the process and challenges of acquiring this data and present benchmark results for machine translation and news topic classification tasks. Our evaluation examines the impact of different data types—originally clean text, post-corrected OCR, and back-translated data—and the effects of fine-tuning from pre-trained models, including those focused on African languages.Our benchmarks demonstrate good performance in news topic classification and promising results in machine translation. We fine-tuned multilingual encoder-decoder models using real and synthetic data and evaluated them on our test set and the FLORES evaluation sets. The results highlight the importance of incorporating more data and potential for future improvements.All models, code, and datasets are available in the https://huggingface.co/LIACC repository under the CC BY 4.0 license.

pdf bib
Network-based Approach for Stopwords Detection
Felermino D. M. A. Ali | Gabriel de Jesus | Henrique Lopes Cardoso | Sérgio Nunes | Rui Sousa-Silva
Proceedings of the 16th International Conference on Computational Processing of Portuguese - Vol. 2